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Abstract

In this paper we present a fast evaluation of the Rayleigh integral, whids I fast and
robust solutions in inverse acoustics. The method commonly used to reszrstoustic
sources on a plane in space is Planar Nearfield Acoustic HolograpfAHP$ome of the
most important recent improvements in PNAH address the alleviation of spatidbwing
effects that arise due to the application of a Fast Fourier Transform tota $patial mea-
surement grid. Although these improvements have led to an increase in tira@cof the
method, errors such as leakage and edge degradation can not bedetoawletely. Such
errors do not occur when numerical models such as the Boundary Bléhe¢imod (BEM)
are used. Moreover, the forward models involved converge to thé sadation as the number
of elements tends to infinity. However, the time and computer memory needed ¢dlsebe
problems up to an acceptable accuracy is large. We present &fastdg n) per iteration)
and memory efficient®(n)) solution to the planar acoustic problem by exploiting the fact
that the transfer matrix associated with a numerical implementation of the Raylésginaih
is Toeplitz. In this paper we will address both the fundamentals of the metlbittaapplica-
tion in inverse acoustics. Special attention will be paid to comparison betwgenimental
results from PNAH, IBEM and the proposed method.

INTRODUCTION

Rayleigh’s second integral gives the pressure field for given novelatities on an infinite
plane [2]. It can be written as follows (see figure 1(a)):
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Figure 1:Inverse acoustics using the Rayleigh integral

Wherez andi denote the source and field points respectiviely, pg andk are respectively,
the imaginary unit, the frequency in radians per second, the density otiti@flrest and the
wave number= w/cy, wherec is the speed of soung, v, andS denote respectively, the
field pressure, the source normal velocity and the set of all points onfthigdrplane. IfS is
has finite area, then the equation gives the pressure field for a sowgérifinite baffle — an
acoustically hard surface that does not vibrate.

The Rayleigh integral can be used for inverse acoustics as followsnGivsource
radiating sound to &nite number of sensors, named the field (see figure 1(b)), one can define
an infinite virtual plane between the source and the field. One can regaxdrtial plane,
rather than the physical source, as the radiator of sound. This cbh&bgendary conditions
does not change the measurement but reconstruction to the plane is silfgfeaw have the
situation in figure 1(c). If itis assumed that the sensors are located clgeefbysical source,
then the normal velocities far away from the sensors are negligible. Niegjéioese velocities
is equivalent to placing a finite virtual plane in an infinite baffle. Hence jtefuirtual plane is
used in the reconstruction. The accuracy of the numerical model caoreaged by extending
the area of the virtual plane and by decreasing the size of the elementsnagtenumerical
models, this (forward) model converges to the exact solution if the numbeegrees of
freedom tends to infinity.

Note that in this derivation, the number of sensors is not assumed to be irfilitdH
techniques, it is necessary to obtain the Fourier transform of the fieddymeas a function
of the location. Naturally, this Fourier transform can not be found exd@tbied on a finite
number of measurements, and an approximation needs to be made by meamsowfimg
techniques. In the current methods, windowing techniques are natssyend the forward
model converges to the exact solution of the Helmholtz equation irrespettitie number
of sensors. Finally, it is noted that calculating a rate of convergenthdamversemodel as a
function of the source area remains difficult but numerical experimem®uastrate that this
model converges as well[[8].
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FORWARD MODEL

In the derivation below, the physical source is not significant. Thezefihe virtual plane
will be referred to as the source for reasons of simplicity. In this sectiomewmonstrate
the structure of a transfer matrix that follows from the a discretized Raylatglgral. This

property only occurs on regular grids. Hence, we assume that theesgud is equidistant
and that a sensor is placed above every node. As demonstrated in seddien,sthe latter
assumption can be weakened. For reasons of simplicity, we consideranstaat elements
with a single Gauss point here, but the structure has been proven foctawider range of
models. In this simple case, the model becomes:

Hv=p with hij = 2iwpoS.G(|7; — ;1) (2)

whereH, v andp are the transfer matrix and the vectors containing source velocities and
field pressures respectivel§. is the area of an element; andy; denote the locations of a
source Gauss point and a field point respectively.

Each element of the transfer matrix depends on the distgfice Z;| only: this is
the distance between the source point with numjband the field point with number The
Toeplitz property (see equation 3) is revealed when it is noted that the dataeogs occur
in a very specific structure. From figures 2(a) and 2(b), it can beaktithat the matrix is
Toeplitz. Furthermore, from figure 2(c), it can be seen that the matrixnisrstric.

hii hi2 hiz his
Toeplitz : hi—l,j = h,"j+1 H= h12 hll h12 h13
symmetric :  h;; = hj; his hi2 hii hig
hia hiz hi2 hi

3)

Due to this structure, the transfer matrix is fully determined by its first columncelgthe
time and memory needed to calculate and store the transfer matrix can bedr&dueé (n?)
to O(n). Although this property is not abundantly present in literature, it shoulbbed that
it is not a new discovery: Toeplitz matrices have been proven to exist fada range of
convolution operators on finite grids/[1] [8].

The matrix structure is similar for a two-dimensional source. A Toeplitz ptgmem
then be identified in both directions. To be exact: when the nodes on thevirate numbered
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Figure 2:Repeated distances for a Rayleigh integral model with constant elememta an
single Gauss point
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1 to k and those in the second row are numbeted 1 to 2k etcetera, such that the source
velocity distribution is not a matrix but a vector, then the structure of the wamsétrix is
block Toeplitz with Toeplitz blocks (BTTB) [1]. The memory usage and time edeftr
numerical integration remair@(n) (wheren is the total number of nodes).

The model discussed here has been chosen for its conceptual simplicityisonot
suited to acoustic nearfield reconstruction. In practice, an adaptidiajuee is used to calcu-
late the numerical integrals accurately. Linear elements are used insteastdrtt elements
and it is possible to measure the acoustical particle velocity as well as theuprebnpor-
tantly, the source mesh is finer and larger than the field grid. Although thediéications do
not change the concept of the method, it is stressed that they are éondiglaccuracy.

The method presented above will be referred to as TRIM (Toeplitz Raylatglgral
Method).

REGULARIZATION

There is a wide range of efficient regularization methods available fgulitpenatrices [1].
However, if the sensors are placed above only some nodes —i.e. if tteegoash is larger
and finer than the field grid — then part of the matrix structure is lost andIheffigient
methods can be applied. If the number of sensors is very large, adésidg n)) matrix-
vector multiplication can be used to make the regularization more efficient. ém tr@éxploit
the speed of this operation we apply the Krylov-subspace methods thalsarpopular in
IBEM, where the matrix-vector multiplications are performed with the fast #lyoc

It is noted that the terrfastrefers to the asymptotical speed of this operation. Numeri-
cal experiments have indicated no increase in speed when the numbéd pbfigs does not
exceed 1000. In this case, it is equally efficient to apply an ordinary retigtor multipli-
cation (keeping in mind that only the first column of the transfer matrix needs sdpsed in
computer memory).

The regularization methods we use are as follows. LSQR regularizatioreds fas
most problems. As an alternative regularization method, we solve the lasgesdorm of
Tikhonov regularization explicitly using a least-squares solver similar to LSQR

CASE STUDY

In this section, we compare the TRIM results with results from PNAH, IBEM araser
vibrometer measurement. The noise source is a hard disk drive sudparalewith wires.
The acoustic pressure is measured on an equidistant grid>o2IL points with a mutual
distance of 10 mm. The field grid is 40 mm from the surface of the object. Tdderds
referred to [3] for more detailed information on the measurement and tailsleoncerning
the PNAH technigue used.
A reconstruction has been made with an implementation of the boundary element

method which has been especially developed for accurate solutions isgéraeoustics [6].
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The surface geometry is meshed with linear quadrilateral elements®htm, which leads
to a total of 1872 elements. Boundary element calculations are performsel/fral frequen-
cies of interest. The inverse problem is solved with LSQR. No systematic methezed
for selecting the regularization parameter. Instead, it is selected usingdhevé, where an
attempt was made to select a solution close to the laser data. It is assumed thalutios
can not be improved significantly without adding new information and mayfitrereerve as
reference result.

Linear quadrilateral elements ok% mm are used for TRIM and the source is chosen
to be extended 0.1m beyond the projection of the measurement grid on all Shde leads
to a total of 5760 elements. LSQR regularization is used and the regularipatiameter is
chosen in such a way that the differences between IBEM and TRIMedeeted such that
the results look similar. This way, the observed differences are caysdifférences in the
method, not by differences in the selected regularization parameter. Finigliyoted that the
PNAH results are selected in the same manner.

The results of the three inverse acoustical techniques are very similafrequeency
of 1075Hz (see figure/3). The PNAH result is slightly closer to the IBEMultethan TRIM.

L L |
3 . ’

(a) Laser (b) IBEM (c) TRIM (d) PNAH

o e Y
[T

Figure 3:Normal velocity (absolute value) at a frequency of 1075Hz

(a) Laser (b) IBEM (c) TRIM (d) PNAH

Figure 4:Normal velocity (absolute value) at a frequency of 9668Hz
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This effect may be caused by differences in the regularization methedsDge to the small
difference, it is concluded that all tested methods work well on this fregue

Significant differences between PNAH and TRIM can be seen on aidray
of 9668Hz (see figure 4). The oscillatory behavior in PNAH is not cdusg under-
regularization: it also occurs in over-regularized solutions. Since a-pounce is present
and the number of sensors per acoustic wavelength is low (i.e. 3) it is dedsé# the in-
accuracy is a sampling artifact. The results of IBEM and TRIM do not Hhigeproblem
and give similar, accurate, results. This is an indication that TRIM hagigahoalue: the
reconstruction of TRIM is accurate on this grid, where a finer grid is giohbneeded for
PNAH.

The fact that the results of IBEM and and TRIM are so similar raises ardifteyues-
tion. The inverse solver for IBEM has made use of the information that ahdoriginates
from an object with a known geometry. This information is not available to TRtMnly
makes use of the assumption that there the normal velocities are negligibleedhesigburce
mesh. However, the results are so similar that we may hypothesize that thi iaéérma-
tion is irrelevant for the current geometry. Theoretical results thattfydhis effect lead to
new insight and possibly, more general efficient numerical techniques.

Finally, we make a note on the computational cost of TRIM compared to IBEM. T
computational times involved in PNAH have not been researched but it id tiitecomputer
resources needed are so small that computational power is not expebied problem for
PNAH, even for very large data sets. All numerical experiments have pedormed on an
Intel pentium 4 workstation with a clock speed of 3GHz and 1Gb RAM, rupppmWindows
XP. For IBEM, numerical integration requires approximately 6 minutes peugncy on this
very fine mesh. In TRIM, the time needed is between 0.06 and 0.1 secapds)ding on the
integration method. The computational cost of regularization has also heteds For both
methods, LSQR regularization is performed for 80 iterations and the time osHHEM is 2
seconds, versus 3.3 seconds for TRIM. The fact that TRIM is sltveerIBEM is presumably
caused by the larger number of degrees of freedom in the TRIM modekdtalled that the
asymptotical order of TRIM is lower. The asymptotical order of memory eisaglso lower
for TRIM because only the first column of the transfer matrix is storedrdotjce, the amount
of memory used to store the transfer matrix is reduced so much that memosyisszten
dominated by the storage of regularization results, which is a problem thaecdealt with.

It may be concluded that TRIM has proven to be a fast, robust andateamethod in
the current case study. Although all methods perform well for the &aqu of 1050Hz, we
have also presented a case where TRIM and BEM give an accuratesend PNAH does
not. Finally, it is noted that the comparison presented here is must not has@esummary
of an exhaustive survey: such a study has yet to take place.

NUMERICAL EXAMPLE

An advantage of numerical regularization techniques versus FFtiasbniques is their
greater flexibility. For example, the current method is not strictly boundegumlstant grids.
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Figure 5:Numerical example of source identification on a non-equidistant grid

Although the symmetric Toeplitz structure only exists if a sensor is placed @&veve source
node, it is possible to assign measurement data on only part of this 'virerados grid and
leave the sensor data on the other points undetermined. This means it ideptssibve a
coarser grid in one area of the field and a finer grid in another. This is dkestrwith the
following example (see figure 5). A grid of Gaussian distributions is usesbasce (see
figure 5(a)) and the field pressures are calculated at a freque®&00Hz, 20mm above the
surface, and 5% Gaussian noise is added to the calculated presauittes.field grid, the
distance between the sensors varies spatially (see figure 5(b)). le §p), a reconstruction
is given. It is clearly visible that the result is smoother towards the top lefiezoof the
reconstruction, which is intuitive because there is less information availabte.tte do
not wish to claim that this variation of smoothness reflects the amount of inflomia any
‘'optimal’ way. We merely state that it varies in a manner which is intuitive.

CONCLUSIONS

An important advantage of PNAH is its conceptual simplicity. The main disadgansathe
fact that a Fourier transform of the spatial data must be obtained fromad sumber of
samples. Even with advanced PNAH techniques, the resulting errorstaakvays negligible.
Also, the padding and windowing techniques needed may be considesesldgant from a
theoretical point of view. From a practical point of view, PNAH is an el&hkd technique
that has proven to give results engineers need.

The forward model of TRIM converges to the exact solution if the elemeatiends to
zero and the source size tends to infinity, which means no windowing te@maga needed.
The fact that this method is based firmly in the field of numerical methods leadveoas
other advantages. First of all, there is a strong link between these methddseamathe-
matical study of inverse problems. Second, there is a wide range of ®@#hhlf’ solutions
available for common problems such as the automatic selection of a regularigatemme-
ter [4] [7]. The main disadvantage is the fact that numerical schemeseaded to obtain a
physical model. Although all of these algorithms are well documented [1]&ly are not
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yet combined into a commercial package.

Naturally, the main advantage of IBEM is the fact that it is suited to arbitraoynggries
and arbitrary distributions of sensors. Disadvantages lie in the computatastand memory
usage which are often a bottleneck for large structures and high freigseln the case study,
we have seen that IBEM required approximately 6 minutes for integrationegrutbrrization
on a single frequency where TRIM required 4 seconds. This diféereiill increase for larger
problems.

Finally, it is noted that to the authors knowledge, the current approachatebe gen-
eralized to arbitrary geometries, but problems with cylindrical and sphejgzametries can
possibly result in transfer matrices that have an even more useful sguctu
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