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Abstract 
The study of algorithms for active vibration control in flexible structures became an area of 

enormous interest for some researchers due to the innumerable requirements for better 

performance in mechanical systems, as for instance, aircrafts and aerospace structures. 

Intelligent systems, constituted for a base structure with sensors and actuators connected, are 

capable to guarantee the demanded conditions, through the application of diverse types of 

controllers. For the project of active controllers it is necessary, in general, to know a 

mathematical model that enable the representation in the space of states, preferential in modal 

coordinates to permit the truncation of the system and reduction in the order of the 

controllers. For practical applications of engineering, some mathematical models based in 

discrete-time systems cannot represent the physical problem, therefore, techniques of 

identification of system parameters must be used. The techniques of identification of 

parameters determine the unknown values through the manipulation of the input 

(disturbance) and output (response) signals of the system. Recently, some methods have been 

proposed to solve identification problems although, none of them can be considered as being 

universally appropriate to all the situations. This paper is addressed to an application of linear 

quadratic regulator controller in a structure where the damping, stiffness and mass matrices 

were identified through Chebyshev’s polynomial functions. 

INTRODUCTION 

Vibration attenuation is an important goal in many engineering applications, 

particularly in aerospace industry. Active vibration control (AVC) in distributed 

structures is of practical interest because of the demanding requirement for 
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guaranteed stability. This is particularly important in light structures, since, they have 

low degree of internal damping [1]. 

For control design is necessary, in general, to know the motion equation, 

therefore, this paper uses the technique of parameters and exciting forces 

identification. This technique provokes a known variation in some parameters of the 

structure. Thus, just measuring the signals before and after of the known parameters 

variation, the forces as well as the structural parameters can be identified.  

The approach is based in two signal acquisitions: in the first one the signal is 

acquired from the original system and the second one the signal is obtained from the 

system with known variation in the parameters of the structure. 

 

STRUCTURAL MODELLING 

The dynamical behaviour of a structure can be described in terms of mass, 

stiffness and damping matrices, and displacement and velocity vectors as 
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where q(t) is the n-length displacement vector, u(t) is the s-length input vector, y(t) is 

r-length  output vector, M is the n x n mass matrix, D is the n x n damping matrix, 

and K is the n x n stiffness matrix. B0 is the n x s input matrix, Coq and the r x n 

output displacement matrix, and Cov is the r x n output velocity matrix. The mass 

matrix is positive definite, and the stiffness and damping matrices are positive semi-

definite, n is the number of degrees of freedom of the system (linearly independent 

coordinates describing the finite-dimensional structure), r is the number of outputs 

and s is the number of inputs. 

Considering a linear time-invariant system, the space-state equations can be 

written in a vector-matrix format through the triple (A, B, C); it allows the equations 

to be manipulated more easily. 
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The related matrices are given by 
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PARAMETERS IDENTIFICATION USING LEGENDRE POLYNOMIALS 

In classical techniques of parameters identification, the identification of 

systems in permanent regimen was only possible from the previous knowledge of the 

forces that excited the same. However, in this work presents the development of a 

technique of parameters and exciting forces identification in systems with multi-

degree-of-freedom, only considering the response signals of the system.  

The technique developed in this work is based on the transformation of the 

system of differentials equations, that conducts the dynamic behavior of the 

mechanical systems, in a system of linear equations, whose resolution is much more 

simple. This transformation is made with the use of functions of orthogonal bases 

such as: the Chebyshev’s Series. 

 

Table 1 –Chebyshev’s Series 

r = number of truncated terms 

 

The following property, related to the successive integration of the vectorial 

bases, holds for a set of r orthonormal functions in the interval [0,t]: 
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where P ∈ ℜr,r
 is a square matrix with constant elements, called operational matrix 

and T

r tttt )}(  ...  )(  )({)( 10 φφφ=mφ is the vectorial bases of the orthonormal series. In 

fact, if a complete vectorial base is regarded, that is, if the series are not truncated, the 

relation obtained in equation (4) is equality. However, in the practice, it becomes not 

suitable, due to the high order of the matrix P.  

The proposed identification method can exploit either free or forced time 

domain responses, in terms of displacements, velocities or accelerations. Since the 

formulations for these three types of responses are quite similar, only the formulation 

for forced systems, in terms of displacements, will be presented in this work. 

The development of the method starts from the equation (1). This equation is 

then integrated twice in the interval [0,t]. Expanding the signals of displacement and 

Recursive formula in the interval ] t,0[ f∈t  Operational matrix of integration 
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excitation forces and applying the integral property given by equation (4), the 

following system of algebraic equations is obtained [2]: 
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where 1,rℜ∈e  is a constant vector whose value depends of the orthogonal function, 
rN  ,ℜ∈X  is the matrix of the coefficients of expansion )(tx , rN  ,ℜ∈F  is the matrix 

of the coefficients of expansion )(tf  

Admitting an induced known variation in some structural parameters of the 

system, the equation (5) can be recast as 
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where MM , MK  and MC  are the inertia, stiffness and damping matrices respectively 

after some known modification in structural parameters, and MX  are the expansion 

coefficients of the output of the modified system. If it is considered that the input 

forces of the system do not change when the parameter variations are induced, then 

one can equal equations (5) and (6). After some mathematical manipulations the 

equations are represented by [3]: 
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where ∆∆∆∆M, ∆∆∆∆C and ∆∆∆∆K are, respectively, the known variations in the mass, in the 

damping and in the stiffness of the system. 
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LINEAR QUADRATIC REGULATOR CONTROL 

The first step in the LQR control design process is the specification of a 

performance index, which can be defined by a quadratic cost function in the state and 

control variables 

 

( )∫
∞

+=
0

dtJ TT
QxxRuu ρ                                                                                                (8) 

 

where Q is a symmetric and positive semi-definite weighting matrix on the states, R 

is a symmetric and positive definite weighting matrix on the controller outputs, and ρ 

is a weighting design parameter relative to state variables. 

Considering the linear time-invariant system, described by equation (2)-(3), 

the control law is given by 

 

u(t) = -Gx(t)                                                                                                                (9) 

 

which minimizes J. If the regulator design is restricted to time-invariant control laws, 

G will be a constant coefficient matrix and u will be a linear combination of the 

states. It is assumed in the regulator design that all of the states are measured. It can 

be shown that the gain matrix G which minimizes the performance index is given by 

[4] 

 

SBRG T11 −=
ρ

                                                                                                            (10) 

 

where S is the solution of the steady-state matrix Riccati equation 
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NUMERICAL APPLICATION 

To verify the proposed methodology, a robotic arm, as shown on fig. 1, was 

considered. The system was used in Valer (1999) for design of the state observer [5]. 

The properties of the system are given in table 2. A disturbance how sine wave with 

frequency of the 30 rad/s and amplitude of the 12 N was considered as disturbance. 
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Table 2 – Properties of the system. 

I 0.4 kg.m
2
 

K 1 N.m/rad 

JM 0.0424 kg.m
2
 

BM 0.0138 N.m.s/rad 

Ke 0.0403 N.m/v 

 

 
Figure 1 – Flexible arm of a robot. 

 

Initially, the signal was obtained from the original system, and in a second 

phase the signal was obtained from the system with known variation in the 

parameters (0.01 kg.m
2
 in I and 0.01 kg.m

2
 in JM). Figure 2a and 2b show the angular 

displacement of sensors 1 and 2 for the original and modified system. 
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Figure 2 – Angular displacement of the sensors 1 and 2 for original system and 

system with variation. 

 

The attenuation of flexible motion of the structure depends on the pole 

mobility on the left-hand side of the complex plane. Therefore, if a particular pair of 
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poles is moved easily, the respective states are easy to control and estimate. On the 

other hand, if a particular pair of poles is difficult to move, the respective states are 

difficult to control and estimate. Figure 3 shows the pole location of the first two 

modes of both systems. 
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Figure 3 – Structural poles location of the flexible arm of a robot. 

 

The response of the system with unknown input force was determined using 

the proposed identification procedure. The angular displacement is measured by 

sensor 1 and can be seeing in the time domain in Fig. 4a, Figure 4b shows the angular 

displacement measured by sensor 2. 
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Figure 4 – Angular displacement of controlled and uncontrolled system, (a): sensor 1 

and (b): sensor 2. 
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FINAL REMARKS 

An LQR feedback control strategy was used to actively control the robotic 

arm with two degrees of freedom. The system was described using the space state 

realization considering the dynamic equation of second order. 

To obtain the motion equation was used a methodology of structural 

parameters identification by Chebyshev’s polynomial function. In this technique, it is 

not necessary to know the exciting forces, but only a variation in some strucutral 

parameter. So, measuring the time response of the system before and after the known 

parameters variation, the forces as well as the structural parameters can be identified. 
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