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Abstract 
This paper describes an audio event identification system named Cyber Ear. Cyber Ear is 
loosely based on human hearing and uses statistical descriptors of the detail wavelet 
coefficients. Neural network has been used for classification of feature vectors. The system 
only requires the weight matrix descriptors to classify an unknown sound event. Two 
experiments that are closely related to real world problems have been conducted. The results 
demonstrate that Cyber Ear is suitable for identifying vehicular sounds at large distances 
under varying conditions, and for monitoring many different train station sounds with good 
accuracy. 

INTRODUCTION 

Computational auditory scene analysis (CASA) attracted some interest after the 
publication of Bregman’s text on human auditory scene analysis [2] and was expected 
to find many applications in data retrieval, autonomous robots, security and 
environmental analysis. Ellis describes approaches to CASA as being either data 
driven (or "bottom-up" processing in psychological terms) where raw data is 
sequentially transformed into abstract representations, or prediction driven ("top-
down") where predictions generated by higher level abstractions that have evolved in 
relation to previous data are used to segregate new data on an ongoing basis [7].  
Classification of environmental noise has been attempted using statistical 
classification methods on 1/3 octave filtered spectra of transport sounds [4]. Higher 
order statistical features have been used to statistically classify musical instrument 
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sounds [6,3], and wavelet transforms have been used for feature extraction prior to 
statistical or neural net classification of marine mammal and musical instrument 
sounds [5,8]. Gygi [9] found that octave band spectral energy distributions and 
amplitude fluctuations within these distributions over time produce timbral cues that 
are important in human recognition of environmental sounds. The rate of successful 
recognition of environmental sounds decreased significantly when participants were 
presented with full bandwith amplitude modulated representations of sounds similar 
to the models used by Ellis.  

The authors have developed a system named Cyber Ear© to identify a small 
dictionary of sounds.  This paper describes tests on this system to classify complex 
real world sounds. To be computationally inexpensive and have real time capabilities 
such a system requires expedient choices of data reduction, feature extraction and 
classifiers that utilize the principles of human sound recognition processing without 
trying to accurately model them. Supervised training of classifiers with example sets 
of sounds for each class will be undertaken prior to classification trials. A detailed 
description of the development and performance of Cyber Ear© compared to other 
classification strategies is detailed elsewhere [12] and a short description follows. 

THEORY 

The Cyber Ear 

Wavelet filter banks have many features in common with the multi-resolution 
frequency-time filtering of the human middle ear [1]. They also have the advantage 
over Fast Fourier Transforms of high frequency resolution at low frequencies and 
high temporal resolution at higher frequencies [14]. In keeping with the findings of 
Gygi, the feature vectors used for classification were the RMS amplitude and 
variance of short frames of wavelet coefficients over 12 decomposition levels. A 
sensitivity analysis was undertaken on the type of wavelet that would best separate 
these features for a range of sounds and the Db3 wavelet was found to perform best 
[12]. It has been used throughout the subsequent research described here. 

There are a number of classification tools available that may be suitable for 
classifying signals based on the small set of features extracted. Artificial Neural 
Networks (NN) is an option that can be used when the separation may be non-linear. 
The other advantages of such a system are that it can learn from examples and it is 
easy for a user with limited technical skills to change the configuration for changed 
data set. This paper reports the use of supervised back-propagation neural networks 
with the following specifications: 
• A feed-forward network with a back propagation learning algorithm and ‘logsig’ 

threshold function to produces binary outputs for classification. 
• The network was trained using ‘momentum’. The initial learning rate was chosen 

to be 0.01 selected after an iterative process. 
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• Three layers were used. The output layer had 1 node for every 2 signal classes, 
the input layer had 24 nodes, one each for the mean and variance of all 12 
wavelet decomposition levels, and the hidden layer had 12 nodes. 

• The limit for sum-squared error was chosen to be 0.001.  
The user cannot predict every sound that may occur in a natural environment and 

incorporate them into an individual training class, so some provision should be made 
for an ‘unknown’ output. Thresholds were applied to the NN outputs such that 
outputs within the range of the threshold from a binary output were classified as 
belonging to a known sound class, and all other outputs were classified as unknown. 
These thresholds could be varied depending on the conditions of use and their values 
may be based on prior knowledge of the signals, and the number of classes (generally 
the more classes, the greater the threshold). The value of the threshold also 
determines the rate of false negatives and false positives. Selection of the threshold 
value may also be done iteratively, which is not a very difficult task as there are only 
few options between 0.5 and 1. 
Example recordings are concatenated and used to develop a training file for each 
sound class. The closeness of different sound classes is user defined, and the success 
of Cyber Ear© to separate the classes is dependent on the number of classes and 
difference between examples of the same class. The recordings of training and test 
files are time framed for further analysis. The length of frame is user defined and 
preliminary experiments suggested a use of 0.1 to 1 second windows. After training, a 
computer file with the weights and biases of the NN is saved for later use in 
classifying a test file.  

The mean and variation of the detailed wavelet coefficients are measures of the 
statistical variation of the signal and not a direct measure of the spectral content 
which is more prone to variation in changed acoustic environment. It is important to 
characterise a background sound that comprises the baseline signal and include it in 
the set of training files so that the NN does not make spurious outputs in the absence 
of target sounds. Transient sources should be segmented from the recordings used for 
the background training file as far as possible. These sounds may comprise a new 
target sound class if they occur often, or they may be simply ignored. The NN is 
likely to give an ‘unknown’ response when transient sounds that it has not been 
trained for occur in a test recording.  

A simple model was created in Matlab using well-established empirical data 
from the literature [13] to better understand the acoustic properties of background 
sounds when they arise from many uncorrelated sources. Outdoor sound intensity is 
be expected to decay at 3 dB with every doubling of distance to a sound source. The 
attenuation also depends on the frequency of the signal, atmospheric humidity and the 
density of intervening vegetation, assuming no reflections (apart from the ground) 
and ignoring lens effects due to atmospheric temperature gradients or wind effects. 
Assuming an even distribution of noise sources, their number increases as the square 
of distance from the recording location.  

Depending on the sound attenuation and the density and amplitude envelopes of 
sources, at a certain distance from the recording location they should overlap to create 
a reasonably constant sound that we define as the background. Figure 1a 
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approximates how constant, white noise sources evenly distributed about a recording 
location sum over distance to produce background sound levels under different 
vegetation densities at 60% humidity. Sources at distances greater than 500 metres 
make no contribution to the background with heavy vegetation, whereas with light 
vegetation lower frequencies continue to contribute for more than 2 km.  
 

  
Figure 1. a) An approximation over 5 octave bands of the summation of white noise sources 

of 65 dB at 1 m, evenly distributed 100 m apart, over a radius of 2 km. Solid lines =light 
vegetation and broken lines =heavy vegetation. Dotted line = number of sources. b) The time 

varying behavior of the 1000 Hz octave band in Figure 1a (light vegetation) assuming 
random onsets of 1 second sources occurring for 10% of the time summed over 1 km. 

 Figure 1b plots the summation over time of intermittent 1-second sources the 
same as those used in Figure 1a for light vegetation. Figure 1b shows that even for 
widely dispersed sources the background sound tends towards constant amplitudes (a 
range of only 0.3 dB) within a 1 km range. An instance of the same source located as 
close as 32 meters to the recording location would produce amplitudes of only 50 dB, 
10 dB below the average background level, and therefore would not be discernable 
from the background variation by amplitude alone. In real situations the constancy of 
the background sound will depend on how many of these sources are correlated (as 
may be the case in wind or traffic noise) and their peak amplitude variation.  

An amplitude threshold value to segment recordings into examples of 
background sounds and louder transient sounds can be evaluated manually by 
application of a Receiver Operating Condition (ROC) [11]. When the target sound 
levels are within a few dB of the background, target training files need to be recorded 
in the presence of similar background conditions, or have the background sound 
artificially added. This ensures that the signals used for training have similar 
properties as the test data. 

In some applications sounds occurring over a range of relatively close distances 
to the recording location will need to be classified. These range differences may cause 
signal amplitudes to vary by up to 20 dB with very little change in the signal 
spectrum due to atmospheric absorption. This amplitude variation will cause large 
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discrepancies in the RMS amplitude feature vectors for the training and test files 
unless they are first normalized.   

METHOD 

Two different examples of the application of The Cyber Ear© are presented in 
the following. The first example is for a public security system for an unmanned 
railway station with sounds of men and women screaming as target sounds amongst 
the usual sounds of the station. The second example is a military or boarder 
protection acoustic surveillance system in which vehicle sounds are identified at long 
ranges. 

Recordings were made of the background sound, and of trains arriving and 
departing from a suburban station using an omni-directional microphone. Six 
examples each of men and women screaming were taken from a Hollywood sound 
effects library. The train sounds were manually segmented into 5 classes for training 
the NN along with 3 other classes as described in Table 1. Example recordings were 
concatenated into individual training files for each class and normalized before the 
calculation of feature vectors for 0.1-second frames and NN training. Training 
required 10,000 epochs to arrive at an error of 0.005. A new, 16-second recording of 
a train arriving at the station was tested with Cyber Ear©.  

 
Table 1. Sound classes used in railway station monitoring 

Class No. Description Class No. Description 
1 Compressed air released 

from the train brakes 
5 Engine noise 

2 Background sound 6 Female screams 
3 Brake squeal 7 Male screams 
4 Clanking of the train wheels 

over joins in the track 
8 Train whistles 

 
For the second example, two sets of recordings were made of vehicle sounds 

using a directional microphone (Sennheiser M61). The variations in the recordings 
conditions included the environmental conditions and presence of intervening 
obstacles. The experiments were also conducted with one or two target classes to test 
the system’s capability to detect multiple targets under these conditions. The vehicles 
were traveling on sealed roads and the distances were of the order of 1-2.5 Km. 

RESULTS 

Figure 2 shows the Cyber Ear© output for the arrival of a train. The sequence of 
acoustic events heard in the recording is well represented by Cyber Ear. Sounds rarely 
occur in isolation, so the Cyber Ear© output at any time represents the dominant 
feature vectors arising from the recording. For example, the clanking sound 
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dominates the NN output for the time it is present, possibly due to its highly 
impulsive nature creating distinctive feature vectors with high variance. However 
because the clanking is a short loud sound, other sounds can be classified in the 
frames between the frames dominated by the clanking. The overlapping sound classes 
cause numerous scattered ‘unknown’ classifications but only 5 segments (out of total 
160 frames) were classified incorrectly (2 background, 1 female and 2 male screams). 
This is an error rate of only 3% of false positives. Such spurious results for the 
screams can be readily ignored, as the real event must last for more than 1 second. 

New examples of female and male screams have been classified with 100% 
percent accuracy when superimposed over the background sound with a signal to 
noise ratio greater than 10 dB. This is sufficient for the screams to be successfully 
classified for any location on the station platform at a centrally located microphone. 
However the screams cannot be successfully classified while a train is arriving or 
leaving.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Classification results for the arrival of a train calculated in 0.1 second frames. 

Classification threshold = 0.2. 

Figure 3 shows the output of Cyber Ear© for over 360 seconds (in 1 second frames) 
when trained to detect the presence of cars and trucks travelling at 60 km/h on a 
sealed road at ranges greater than 2.5 km using a directional microphone with line of 
sight in low noise conditions. The outputs of the 2 NN output nodes compared to the 
classification thresholds, and the NN binary outputs corresponding to each class are 
also shown Figure 3. Node 1 is the solid line and node 2 is the broken line. The 
regions of extended elevation of either line are indicative of a positive classification 
of a car or truck while other short peaks may be noise. 

Figure 4 shows the output of Cyber Ear over 2 ½ minutes in adverse recording 
conditions when trained to detect the presence of cars travelling at 80 km/h on a 
sealed road at ranges greater than 500 meters using a directional microphone. Wind 
speeds were variable up to 15 km/h across the range, and there was medium density 
of trees and shrubs and low landforms between the vehicle and the recording location.  

Under these conditions it was found to be necessary to initially segment 
background recordings and create 2 new sound classes. Therefore the system was 
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trained with 4 classes of sound; 1) background sound of wind in vegetation, 2) cars 
travelling at 80 km/h on a sealed road at a range of 500-1000m in the same 
background sound conditions, 3) cockatoo bird calls, and 4) wind noise on the 
microphone. The training files were were broken into 0.1 second frames before 
feature vectors were calculated. The car was detected at a range of 1 km for about 10 
seconds at around 100 seconds into the recording as it moved between landform 
obstacles. Other detections are possibly spurious. The node 1 outputs between 60 and 
100 seconds reflect the transient nature of individual birdcalls compared to the 
smoother node 2 responses for the car. 
 
 
 
 
 
 
 
 
 

 

Figure 3. Classification results for the detection of a cars and trucks traveling at 60 km/h on 
a sealed road at 2.5 km (line of sight). Solid line = NN output 1, broken line = NN output 2, 
dotted line = classification threshold of 0.2.  

 
 
 
 
 
 
 
 
 

 

 

Figure 4. Classification results for the detection of a car traveling at 80 km/h on a sealed 
road at 0.5 – 1 km in the presence of substantial background sounds and physical obstacles.  

CONCLUSIONS 

The Cyber Ear©, a patented audio event identification tool, based on wavelet 
statistical description and neural net classification, has been described in this paper. 
The application of the system requires that acoustic signals recorded at the site be 
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segmented into transient and constant sounds. Commonly occurring transient sounds 
may become a target class used in training the NN, and less common transient sounds 
can be ignored. Constant sounds that don’t contain embedded target sounds become 
another training class called the background. For mobile sources at close range all 
sound files should be normalized before feature vectors are calculated to account for 
large amplitude changes.  

The background needs to be carefully defined when target sounds are within a 
few decibels. In this case all training files may need to include the background sound, 
and care needs to be taken to ensure that the training and test files are presented to the 
system at consistent amplitudes. In a simple mathematical approximation, 
intermittent, widely dispersed uncorrelated sources were shown to sum over time to 
produce a constant background sound in an idealized outdoor environment. Two real-
world applications of Cyber Ear© in which target sounds are at close or distant range 
have been shown to produce promising results.  
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