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Abstract
New approximate models for external acoustics interacting with flexible structures are de-
veloped. The basic form of the present models is obtained by a combination of the Laplace-
transformed retarded and advanced potentials. It is shown that the maximum attainable time-
derivative of convergent approximate models is two, hence any attempt to include higher
orders will lead to non-convergent models. The basic model is subsequently modified from
the consistency considerations of the resulting frequency response functions. The resulting
model is expressed in terms of a free parameter that represents the weight of the retarded vs.
advanced potential characteristics, and consistent in terms of capturing the correct impulse re-
sponse. Hence, the present approximate model is well suited for acoustic-field determinations
and inverse acoustic identification applications.

INTRODUCTION

Exact solutions of structures interacting with external acoustic fields are available for ideal
geometries such as infinite cylinders, spheres, and plates. As engineering designs consist of
irregular geometries, approximate acoustic models have been widely used. In most existing
approximate acoustic models, first, the two limiting cases have been modeled: early-time
response and late-time response by employing the initial-value and final-value theorems to
the Kirchhoff’s spherical acoustic integral wave equation [5]. Existing approximate models,
known as Doubly Asymptotic Approximations (DAA), have been proven to be adequate for
characterizing the acoustic radiation damping affecting the structural responses that are domi-
nated by low-frequency components [7]. For medium and high-frequency transients, however,
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most existing approximate structure-external acoustic interaction models suffer from both fre-
quency distortions and inaccurate radiation damping.

When one focuses on the pressure field modeling, not only the pressure magnitudes
but also its phase information have to be obtained accurately. This is especially true for iden-
tifying sound sources as well as sound intensities. For example, a careful examination of
most existing approximate models for ideal structural geometries, when compared with the
exact models obtained via Kirchhoff’s formula, reveals that the dominant acoustic scattering
pressure modes are often not represented. Hence, most existing approximate models, while
adequate for structural response calculations, may not be applicable to inverse acoustics prob-
lems wherein the primary objective is to identify the sound sources.

This has motivated the present authors to develop acoustic models that can capture pre-
dominant acoustic modes, as distinct from structural modes, and yet that are computationally
attractive. From the theoretical point of view, the well-known Kirchhoff’s retarded potential
equation may be considered as the foundation of all the existing approximate models. Under
this premise, different approximate acoustic models originate from the corresponding differ-
ent approximations of the retarded (or delayed) operator.

In Part I of the present work, we will employ a combination of the retarded and ad-
vanced operators. In employing the advanced operator, we are keenly mindful of the dis-
agreement between Ritz and Einstein[11] on the validity of the advanced potential and the
subsequent discussions that appear to suggest that the use of the advanced potential may be
untenable in relativistic electromagnetic theory [9]. Even to this date, the 1908 Ritz-Einstein
disagreement continues to rouse intense arguments and counter-arguments[1, 4]. However,
our use of the advanced potential in acoustics for the purpose of deriving approximate acous-
tic models is justified primarily by the observation that the classical laws of physics (to which
the acoustics field belongs) discovered by Galileo, Newton and Einstein are time-symmetric
and secondly by recent applications of the time-reverse concept in acoustics [3,6]. In other
words, as acoustic signals are invariant under time-reversal, each packet of sound that comes
from a source can be reflected, refracted or scattered. Consequently, a set of reflected waves
can retrace all of the scattering paths, converging at the original source just as if time was
going backwards. The rest of the paper is organized as follows.

To start off, the Kirchhoff’s retarded potential and its corresponding Laplace-
transformed equation are introduced and the inherent unstable nature of approximate models
derived by approximating the retarded potential is discussed in Section 1. The use of the ad-
vanced operator is introduced in Section 2 and is subsequently combined with the retarded
operator to form a combine. It is shown that the resulting basic approximate models are stable
provided the weight parameter, β, is selected judiciously.

The present basic approximate models are then modified to address a consistency con-
dition imposed on them in order for them to possess the important correct impulse response
characteristics. The resulting approximate models thus derived show that: (1) the so-called
added mass is associated only with the structural inertia acting on the acoustic boundary and
not with the acoustic transient pressure as most existing models have assumed; (2) The max-
imum convergent order of the coupled acoustic pressure equation is at most two in terms of
its time derivatives; (3) most existing approximate models fail to satisfy the initial impulse



ICSV13, July 2-6, 2006, Vienna, Austria

response condition, thus they may yield erroneous impulse responses that are important for
inverse identification applications.

A critical evaluation of the present approximate models are reported in the companion
paper, Part II[10].

KIRCHHOFF’S RETARDED POTENTIAL FORMULA

Kirchhoff’s retarded potential formula for describing the expanding or radiating wave can be
expressed as[2]:

4πεp(P, t) =
∫

S
{ ρ

R
u̇(Q, tr)− 1

R2

∂R

∂n
p(Q, tr)− 1

cR

∂R

∂n
ṗ(Q, tr)}dSQ (1)

where R is the distance from P to a typical point Q on the surface S; ∂/∂n denotes differen-
tiation along the outward normal to S; ε is the solid angle that takes on (1, 0.5, 0) depending
on whether the point Q is within the acoustic domain, on the surface S, or inside the enclosed
surface S, respectively. The tr denotes the retarded time t − R

c and the retarded potential
terms are Laplace-Transformed as

∫ ∞

0
e−stg(Q, tr)dt = e−sR/cg(Q, s), g(Q, s) =

∫ ∞

0
e−stg(Q, t)dt (2)

Hence, this formula(1) can be expressed in the Laplace Transform domain as
∫

S
p(Q, s)

∂R

∂n

1
R2

(1+Rs/c) e−Rs/cdSQ +4πεp(P, s) = ρ

∫

S
su(Q, s)

1
R

e−Rs/cdSQ. (3)

The Laplace-transformed counterpart(3) states that the contributions of Kirchhoff’s re-
tarded potential formula(1) from the previous states are expressed in terms of the delay oper-
ator e−sR/c. It should be noted that various approximations, both in the time and the Laplace
domain methods, amount to how this delay operator is approximated.

An approximation of the Laplace-transformed Kirchhoff equation is to use the two-
term Taylor series:

e−µ = 1− µ + O(µ2), µ = Rs/c (4)

which is justifiable because as long as Rs/c < 1, it can be considered a good approximation
for capturing the late-time (or low-frequency) responses.

Substituting (4) into (3), we obtain

4πεp(P, s) +
∫

S
p(Q, s)

∂R

∂n

1
R2

(1 + Rs/c)(1− Rs

c
)dSQ ≈ ρ

∫

S
su(Q, s)

1
R

(1− Rs

c
)dSQ

(5)
Observe that the above approximation does not contain any parasitic term, {O(Rp), p > 0},
so that the resulting approximation does not diverge as R → ∞. Rearranging the above
equation leads to

− s2

[
1
c2

∫

S
p(Q, s)
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∂n
dSQ

]
+ 4πεp(P, s) +
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p(Q, s)

∂R

∂n

1
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dSQ

= sρ

∫

S
u(Q, s)

1
R

dSQ − s2 ρ

c

∫

S
u(Q, s)dSQ (6)



K. C. Park, Moonseok Lee and Youn-Sik Park

When the preceding equation is discretized and transformed back to the time domain ,
its discrete form may be symbolically expressed as

− [Md] p̈d + [Kd] pd = Bdu̇d −Adüd (7)

where the subscript d refers to the discrete quantities; and, [Md] and [Kd] physically represent
the projected area matrix and the static pressure stiffness matrix, respectively, hence non-
negative definite matrices. This means that the pressure approximation equation using the
two-term Taylor approximation of the delay operator leads to an unstable model.

NEW APPROXIMATIONS OF KIRCHHOFF POTENTIAL FORMULA

It is recalled that the Taylor series expansion of the retarded operator, e−Rs/c, has led to an
unstable approximation in time. This suggests that one may profit by employing the advanced
potential defined as

φa = φ(Q, ta) = φ(Q, t +
R

c
),

∫ ∞

0
e−stφ(Q, ta)dt = esR/cφ(Q, s). (8)

Although the use of the advanced potential continues to rouse intense arguments and
counter-arguments [1, 4], in the view of acoustics, their signals are invariant under time-
reversal. Furthermore, each packet of sound that comes from a source can be reflected, re-
fracted or scattered. Consequently, a set of reflected waves can retrace all of the scattering
paths, converging at the original source just as if time was going backwards.

Combining the two-term Taylor series approximate Laplace-transformed expressions
of the retarded and advanced equation in accordance of the weighting rule stipulated in [11],

φ = βφr + (1− β)φa (9)

we obtain
∫

S
p(Q, s)

∂R

∂n

1
R2

(1 + Rs/c) {1 + (1− 2β)Rs/c}dSQ

+4πεp(P, s) ≈ ρ

∫

S
su(Q, s)

1
R
{1 + (1− 2β)Rs/c}dSQ (10)

It should be noted that as briefly stated in the previous section, inclusions of the terms
O(µp, p > 1) would yield parasitic models and those terms would result in a large value of
the coefficient matrices as R →∞.

Rearranging the above approximate equation in the order of s-variable, we obtain

(1− 2β)s2Bp(P, s) + 2(1− β)scB1p(P, s) + c2B2p(P, s)

= (1− 2β)s2ρcAu(P, s) + sρc2A1u(P, s) (11)

where

Bp(P, s) =
∫

S

∂R

∂n
p(Q, s)dSQ, B1p(P, s) =

∫

S

1
R

∂R

∂n
p(Q, s)dSQ
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B2p(P, s) =
∫

S

1
R2

∂R

∂n
p(Q, s)dSQ + 4πεδ(P −Q) (12)

Au(P, s) =
∫

S
u(Q, s)dSQ, A1u(P, s) =

∫

S

1
R

u(Q, s)dSQ

It is observed that the present approximate model equation(11) would be stable provided

(1− 2β) ≥ 0 ⇒ β ≤ 1/2. (13)

MODIFICATIONS FOR EARLY TIME RESPONSES

The approximate model for external acoustic field interacting with flexible structures derived
in (11) has been obtained by assuming that Rs/c is less than 1. This implies that the approxi-
mate model thus derived would offer higher model fidelity for the late-time response than in
early-time response by virtue of the initial(s → ∞) and final(s → 0) value theorems of the
Laplace transform. This means that among the five coefficient operators (B, B1, B2, A, A1) in
the basic approximate acoustic model(11), the two zeroth-order terms (B2, A1) should need
no further modifications. In addition, as s2u may be regarded as an applied pressure to the
pressure equation, we will accept A with no further modifications well. This leaves the two
remaining operators, viz., (B, B1), as potential modification operators in order to improve the
model fidelity for the early-time response.

Plane wave approximation

The plane wave approximation was investigated for the early-time responses by Mindlin and
Bleich. Fellipa[10] also derived the first order early time approximate, which is the plane wave
approximation of Mindlin and Bleich. So, we apply it to the present approximation model for
the early time responses.

Using the plane wave approximation,(∂R
∂n → 1), B and B1 are modified as :

B1p(P, s)| ∂R
∂n
→1

= A1p(P, s), Bp(P, s)| ∂R
∂n
→1

= Ap(P, s) (14)

This is because, in physical terms, the direction of the wave path and the normal to the inter-
action surface remain parallel for plane waves.

With the above modifications, we arrive at the present approximate second-order exter-
nal acoustic model given by

αs2Ap(P, s) + (1 + α)scA1p(P, s) + c2B2p(P, s)

= αs2ρcAu(P, s) + sρc2A1u(P, s), α = 1− 2β > 0 (15)

which considers the early-time response and yields the quasi-steady state scattering pressure
response as the corresponding terms in the expansion of the Kirchhoff’s retarded potential has
not been altered due to the introduction of the advanced potential.
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Figure 1: A spherical shell surrounded by acoustic medium

Modal Form of the Present Approximate Model for a Spherical Shell

For the simplicity of subsequent algebra, dimensionless variables are used: t = Tc/a, w =
W/a, v = V/a, r = R/a and p is normalized by ρc2, where T is the time(sec).

To this end, first, we utilize the spherical surface as shown Fig 1 for which the analytical
modal equation for the scattering pressure is known[8]. Second, we use the three operators
(B2, A, A1) , calculated in the companion paper Part II, in terms of the Legendre functions.

In a spherical shell, the scattered pressures are expressed as :

ps (r, θ, t) =
∞∑

n=1

ps
n(r, t) Pn(cosθ) (16)

where Pn is the nth order Legendre polynomial and ps
n is the component of ps for nth order.

Using the above scattered pressure and three operators for a spherical shell, the present
approximate model in terms of the Lgendre functions is described in Laplace domain as:

αs2pn + (1 + α)spn + (1 + n)pn = αun + un (17)

The DAA1 and DAA2 can be assessed in the same way. Geers et al [7] gives the fol-
lowing Laplace-transformed equations:

DAA1 : spn + (1 + n)pn = sun (18)

DAA2 : s2pn + (1 + n)spn + (1 + n)2pn = s2un + (1 + n)sun. (19)

In this case, the analytical Legendre mode-by-mode relation the external pressure vs.
the radial particle velocity[7, 8] is derived as

pn(s)
un(s)

= [Gn(s)]ex =





s/(s + 1), for n=0
(s2 + s)/(s2 + 2s + 2), for n=1

s3+3s2+3s
s3+4s2+9s+9

, for n=2
(20)
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Early-Time Consistency Analysis

The early time consistency is important for inverse acoustic problems. Applying the initial
value theorem to the impedances of the exact, present approximate model, one obtains

lim
t→0

[
pn(t)
un(t)

]
= δ(0)− 1, for the exact and present model cases (21)

Hence, the present model satisfies the early-time consistency requirement. On the other
hand, the DAA1 and DAA2 have the initial values determined as

lim
t→0

[
pn(t)
un(t)

]

DAA

=
{

δ(0)− (n + 1) for DAA1

δ(0) for DAA2
(22)

Neither the DAA1 nor the DAA2 satisfies the early-time consistency requirement. The
only exception is for the case of the DAA1 with the breathing spherical mode(n = 0).

OBSERVATIONS OF THE PRESENT APPROXIMATION

We now offer the following observations:
Remark 1: The case of β = 1/2(α = 0) in the present modified model(15) is further

simplified to a first-order model which is identical to the DAA1:

scA1p(P, s) + c2B2p(P, s) = sρc2A1u(P, s) (23)

From the present model derivation viewpoint, thus, the DAA1 is obtained when the equal
strength of the retarded and advanced potentials is chosen in the model. However, the above
first-order model (the DAA1) fails to satisfy the early-time response consistency requirement,
except for the case of the breathing mode (n = 0) for the spherical geometry. Nevertheless,
the DAA1 has been extensively utilized as a baseline approximation for the transient response
analysis of submerged structures[7].

Remark 2: The case of β = 0(α = 1) corresponds to the use of only the advanced
potential.

Remark 3: As pointed out in Section 2, the case of β = 1(α = −1) corresponds to the
use of only the retarded potential in the approximate model(6) which is unstable.

Finally, a two-parameter model can be developed by a linear combination of the first-
order model(23) and the second-order model(15):

α(1− γ)s2Ap(P, s) + [(1 + α)(1− γ) + γ] scA1p(P, s) + c2B2p(P, s)
= α(1− γ)s2ρcAu(P, s) + sρc2A1u(P, s), {α > 0, γ < 1} (24)

SUMMARY

New approximate model of external acoustic pressure field interacting with flexible struc-
tures has been derived. The approximate model derived therein has shown that it is consis-
tent with respect to initial value of impedance. This consistency condition is considered an
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important property for inverse identification applications, in addition to transient acoustic-
structure interaction simulations, because accurate determination of impulse response func-
tions in time(or frequency) domain identification methods is critical.

It has been shown that the maximum order of the pressure model equations is two in
time ( d2

dt2
). The model includes a free parameter (β) that represents the participation weight

of the retarded potential (β) vs. that of the advanced potential (1 − β) in the approximate
model, where β = 1/2 is a special case of their equal participation. However, this seemingly
reasonable choice of the equal weight case (β = 1/2) reduces the present approximate model
to a first-order model in time that is not consistent with respect to initial conditions. This has
motivated us to conduct a thorough parametric study vs. the corresponding model character-
istics so that the model can be tailored for various particular pressure loading/incident waves.
This is presented in Part II[10].
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