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Abstract 
Despite the fact that the phenomenon of wave transmission in thick connected plates has been 
studied over many years, this paper is aimed at doing a brief review of the problem. It is part 
of a greater research project concerning the prediction of traffic noise at bus terminals in 
Uberlândia City, Brazil. At this initial stage, the main task is to predict the vibration 
transmission at junctions of connected thick slabs and walls, typically used in conventional 
buildings in Brazil. In addition, an assessment of the influence of the joint configuration was 
also considered. Thus, the contribution of this analytical study was to provide some 
information concerning transmission efficiency of waves propagating along typical building 
elements at low, mid and high frequency ranges; and subsequently to identify the governing 
parameters that affect the overall sound pressure level inside the bus terminals. Moreover, the 
influence of joint layouts on transmission was to be examined.  

INTRODUCTION 

Although structure-borne noise transmission at structural junctions has been 
investigated over many years [1,2], increased efforts have recently been directed to 
satisfy minimum sound insulation criteria recommended by stricter regulations. In 
building acoustics many studies of vibration transmission at most common joints 
have been based on simplified models, which are generally described in terms of line 
connected ‘thin’ plates. Even though other types of waves propagate in flat thin 
plates, e.g. those known as in-plane waves, flexural waves are generally the most 
important ones when noise radiation from floors, ceilings and/or walls in buildings is 
being considered. The thin plate theory is primarily based on the assumption that the  
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bending wavelength of the propagating bending wave, in a thin plate, must be 
sufficiently larger than the plate thickness. A practical limit of validity for this theory 
has been established [3]. On the other hand, some types of sources (such as footsteps, 
dropping of an object on a hard surface floor, etc.) may lead to high-frequency energy 
transmission in a building structure. Thus, the ‘thin’ plate theory, which is described 
in the next section, may not be appropriate in all of these circumstances. As a result, a 
more complex formulation, ‘thick’ plate theory, was developed to overcome the 
limitations imposed by the simplified theory. 

Despite the fact that the ‘thick’ plate theory has already been used for various 
problems in building structures [6], the main concern initially was to achieve an 
optimum balance between lightweight components and stability of the whole 
‘skeleton’. The consideration of the connection of thin and thick building elements 
(such as floors, ceilings and walls) and its effects in terms of structure-borne sound 
transmission has already been studied in previous publications [4,5,7,8]. There are 
some limitations in the reported studies and further study is still required for the 
development of a more general model. In addition, the analysis of the sensitivity in 
the results, in terms of coupling loss factors, has not yet been fully explored in terms 
of considering different joint configurations.  

The results are presented for the most common type of structural junction 
namely the corner joint. Finally, the main conclusions are presented.  

THE WAVE DYNAMIC STIFFNESS METHOD (WDS) 

The WDS method was developed previously for thin plates [9]. In this method a 
dynamic stiffness matrix related displacements to forces acting on a structure, and 
could be derived for finite and infinite plates. It was assumed that plate boundary is 
infinite in length along the connection. Hence, a ‘wave’ dynamic stiffness matrix 
describes displacements along an infinite panel boundary to the forces applied to the 
boundary. The wave solutions were related to the boundary displacements on the 
semi-infinite panel by the matrix equation [9] 

jjj dζB =                                                  (1) 

where  is a square matrix obtained by using the solution to the wave equations [9], 
 is a column vector containing the amplitudes of the wave solutions considered on 

a particular plate and  is a column vector containing the displacements along the 
boundary. The subscript j indicates semi-infinite plate j. Similarly, the relationships 
between panel deflections and boundary forces are defined as 

jB

jζ

jd

jjj fζC =                                                                     (2) 

where can be obtained by using the strain-displacement and stress-strain 

relationships [9]. Multiplying equation (1) by  and substituting  into equation  
jC

1−
jB jζ
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(2)  

jjjj fdBC =−1                                                               (3) 

Thus, the stiffness matrix of a semi-infinite panel, in which the flexural and 
extensional vibrations are included, is defined as 

1−= jjjL BCK =                      (4) 
je

f
⎥
⎦

⎤
⎢
⎣

⎡
K

K
0

0

where Kf and Ke are the flexural and extensional stiffness matrix contributions [9]. 

The global stiffness matrix is calculated as 

1−= jLjjGj RKRK                                         (5) 

where Rj is the transformation matrix for one (semi-infinite panel) or two (strip-plate) 
‘nodes’ elements. It relates displacement vector  in global coordinates to the local 
displacement vector  as  

Gjd

Ljd

GjjLj dRd 1−=                                  (6) 

Subsequently, the joint stiffness matrix  is determined using a matrix 
assembly method [10]. For instance, the joint stiffness for semi-infinite panels 
connected at a ‘line node’ is simply given by 

GTK

∑
=

+=
N

j
GjGincGT

1
KKK                                                  (7) 

where  is dynamic stiffness of the panel (‘input panel’) which holds the incident 
wave [9],  is the dynamic stiffness of the remaining panels [9] which share the 
same connection, and N refers to the total number of connected panels to the ‘input 
panel’. On the other hand, if an infinite ‘beam element’ is used [11] rather than an 
infinite line at the junction, its stiffness  must also be included into equation (7). In 
order to determine the displacement at the common junction, the force  applied to 
the joint remains to be defined. This vector may be expressed as [9] 

GincK

GjK

bS

GTf

 

INPINP

N

j
GjGT fdKf −−= ∑

=1
                                       (8) 

where  is the global deflection of the joint [9], which for instance may have more 
than one node (e.g. ‘strip plate’ included), due to an incident excitation wave. In  
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addition,  is the force vector acting on the ‘nodes’ of the joint due to the presence 
of the incident wave. Finally the system is then solved in terms of the wave 
amplitudes and resulting displacements as 

INPf

GTpGT fdK =                                          (9) 

where  is the displacement of the joint due to the force . Thus, the total 
displacement of the joint is given by 

pd GTf

pINPGT ddd +=                                                 (10) 

The complex amplitudes of the traveling waves in each panel may be calculated 
by relating the local displacements to the wave amplitudes (Equation 1). For instance, 
the wave amplitudes on semi-infinite connected plates connected on a single node are  

pnnINP dRBw 11 −−=                                                (11) 

GTjjj dRBw 11 −−=                                                         (12) 

where  and  are the wave amplitudes of the ‘input plate’ and ‘receiving 
plates’ respectively [9]. 

INPw jw

THE TRANSMISSION AND REFLECTION EFFICIENCIES 

The transmission and reflection efficiencies were defined as the ratio of power flow 
per unit length from the boundary to the power per unit length incident upon the 
common boundary. In other words, the incident, reflected and transmitted intensities 
normal to the junction were to be determined. The intensities were evaluated for thick 
plates. It was assumed that the frequency-range considered in this work was much 
lower than the frequencies corresponding to the first modes of the thickness-shear and 
torsional motions. Therefore, the Mindlin’s bending phase speed is used to evaluate 
the flexural propagating power flow [13]. The in-plane motion was assumed to be 
decoupled from the thickness vibration modes. Thus, the calculations were only 
considered at frequencies which are lower than the frequency of the first thickness-
stretch mode of vibration for the plate. It is well-known that the sum of transmission 
and reflection efficiencies must be unity in order to ensure the conservation of energy 
in a joint [3]. In this paper, an incident propagating Mindlin bending wave was 
considered. Furthermore, the transmission and reflection efficiencies were averaged 
over all incident angles. Thus, a diffuse sound field was assumed in the incident plate.  
 



ICSV13, July 2-6, 2006, Vienna, Austria 

 

NUMERICAL RESULTS 

The results presented here take into account rotational inertia and shear deformation 
effects in the calculations. Also in these simulations the in-plane waves generated at 
the junctions are fully incorporated in the solutions. It is known that the effectiveness 
of connections on sound transmission does not only depend on material properties but 
also on the geometry of joint configurations. The calculations were obtained for two 
types of joints. For the corner-type joint 1, concrete plates were considered for both 
legs. For the corner-type joint 2 the material properties of concrete and masonry were 
considered for the source and receiving legs respectively. The assumed values for the 
Young’s modulus, Poisson’s ratio and density of concrete were 15 GN/m2, 0.3 and 
2400 kg/m3 respectively. Likewise, the properties for the masonry were 5 GN/m2, 0.2 
and 1800 kg/m3. The geometrical properties of the plates also contribute to the 
effectiveness of subsystem to subsystem transmission. A thickness value of 0.1 m was 
assumed for all of the semi-infinite plates. The line-connection ‘L’ configuration 
considered here corresponds to one of the benchmark models proposed recently in 
ref. [15]. Nevertheless, the effects of rotational inertia and shear deformation were 
considered in the WDS method for a corner joint-description model. There exist 5 
degrees of freedom along the boundary. The interaction of the incoming, transmitted 
and reflected waves satisfy the boundary conditions. The governing equations are 
presented in ref. [13]. Five types of distinct waves can exist in a thick plate. They are 
the pure bending wave, the bending near field, quasi-longitudinal waves and 
transverse waves.  

The incident intensity considered in the model was due to a propagating 
flexural wave in the semi-infinite plate 1, which is made of concrete. As mentioned 
before, the coupling between distinct types of propagating waves (e.g. Mindlin-
bending and ‘in-plane’ waves) was also considered. For the sake of simplicity, the 
term ‘longitudinal waves’ was referred to ‘quasi-longitudinal’ waves herein. Figures 
1 and 2 show the variation with angle of incidence of transmission and reflection 
efficiencies, taking into account not only secondary longitudinal and transverse waves 
but also Mindlin bending waves. It is well-known that no energy (including 
secondary longitudinal and transverse wave intensities) can be transported beyond the 
boundary line at certain limiting angles of incidence. Distinct limiting angles of 
incidence can be obtained for the reflected and transmitted waves. At frequencies for 
which the bending phase speed in the receiver is much lower than either the quasi-
longitudinal or transverse shear wave speeds, the transmitted in-plane waves do not 
contribute to the calculated power flow for most angles of incidence. The efficiencies 
sum up to unity, as it is required to ensure the conservation of energy for a non-
dissipative junction transmitted waves. The transmission efficiencies for both corner-
joint types 1 and 2 were calculated for a frequency range 0-2500 Hz and shown in 
Figures 3-(a) and 3-(b) respectively. Angular average values of transmission 
coefficients were obtained. The integration was performed numerically using  
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Simpson’s Rule and assuming diffuse field incidence. The length of time required for 
the calculation was directly proportional to the number of angles computed (= 1,000) 
and the highest frequency considered (= 2500 Hz). For the corner-type joint 1, which 
is composed of identical plates, a maximum of 50 % of the normal incident energy 
can be transmitted into the receiving plate in terms of a propagating bending wave 
[3]. The results show the TL values obtained from the combined Mindlin bending and 
in-plane formulation which is compared with the values for the conditions of thin-
plate bending, Mindlin bending and the thin-plate bending plus in-plane analysis. The 
results show the corresponding angular averaged TL for an incident out-of-plane 
bending wave for the L configuration. 

Figure 3-(a) shows that for the thin-plate theory and the Mindlin bending wave 
formulations, the transmission loss (TL) values differ slightly from each other. 
Furthermore, it is seen that the decrease of TL was significant for values of  
( Hz), where h is the plate thickness and k is the trace wavenumber 
corresponding to flexural motion. Figure 3-(b) shows that the decrease of TL was 
significant at frequencies greater than 600 Hz. In the Statistical Energy Analysis 
(SEA) method, the power flow between coupled structural plates (components) is 
determined by considering a power balance for each component. The coupling loss 
factor (CLF) describes the nature of coupling between the plates. For a line junction, 
the calculation of the CLF is based on the assumption that the transmission 
coefficient is much less than one. Nevertheless, this might not be true at frequencies 
for which in-plane waves are significant. 

1>kh
1100≈
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                              a)                                                                                             b) 
Figure 1: Transmission )(τ and Reflection )(ℜ  efficiencies for the corner-type joint 1 at 
2000 Hz. a) Thin-plate bending; b) Mindlin bending; The subscripts shown in the figure 

represent: BB – Bending to Bending; BL – Bending to Longitudinal; BT – Bending to 
Transverse. 
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                              a)                                                                                             b) 
Figure 2: Transmission )(τ and Reflection )(ℜ  efficiencies for the corner-type joint 2 at 
2000 Hz. a) Thin-plate bending; b) Mindlin bending; The subscripts shown in the figure 

represent: BB  Bending to Bending; BL – Bending to Longitudinal; BT – Bending to 
Transverse. 
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                              a)                                                                                b) 

Figure 3: Angular averaged transmission loss (TL) for:a) the corner-type joint 1; b) the 
corner-type joint 2  ..... Bending (thin plate); ____ Bending + in-plane waves; -.-.-.- 

Bending (Mindlin’s thick plate – red colour); ------ Bending (Mindlin’s thick plate)+ in-plane 
waves – red colour 

CONCLUSIONS 

It can be observed that the main effect of including in-plane waves in the analyses 
was to increase the transmitted intensity at the junction. In other words, the effects of 
in-plane waves on the transmission efficiencies show that for a corner junction, the 
predictions might lead to significant underestimation of the values, especially for 
increasing frequency considerations. In addition, the effects of shear deformation and 
rotary inertia were significant at higher frequencies. Although a formal benchmarking  
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of numerical models for computing transmission coefficients [15] was set to facilitate 
the transfer of information between SEA users, the TL values were computed only in 
terms of semi-infinite thin-plate junctions. Therefore, the inclusion of the thick plate 
bending effects might give some additional insight to existing wave transmission 
problems in SEA analysis. 
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