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Abstract

The dynamic vibration absorbers (DVA) are simple and traditionatdsvised very
commonly for vibration suppression. In this work a theoretical anatysasdynamic
vibration absorber attached to a viscously damped beam is presented.

The DVA is composed by several one degree of freedom systemgrintspal
advantage is that it is possible to control several modes of theigali structure
simultaneously.

A new criterion is introduced to optimize the parameters of theceewith the
objective of reducing the motion of certain points of the beam.

The mathematical model is based on the Assumed-Modes Method which osake
of Lagrange’s multipliers to take into account the constraint®doted by the
absorber and the optimization is performed by means of the “simwdatezhling”
technique.

The proposed method consists on minimizing the amplitude of vibration in
predetermined points of the beam considering a broadband attenuation ardeumsing
Hartog’s proposals.

Cases studied show the influence of the position of the DVA relaivbe point
where the motion is desired to be reduced is considered.

INTRODUCTION
The dynamic vibration absorber (DVA) is a technical device, in gi@ciquite

simple, which advantageously couples vibrations between the main dyktenete
or continous) and a discrete, subsidiary system having as a goaddingtion of
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vibrational phenomenon in the main system. It is important to point outtmae
authors define the device as “vibration neutraliser’[1] since thatmns of the main
system are not absorbed but reduced in it. On the other, hand the vibratieisable
increased in the subsidiary system. It could also be called “dgnaibration
redistributer’(DVR) which philosophically corresponds to the actual phenomif
damping is not considered.

The simplest version of a DVR is an undamped one degree of freedtamsy
The device allows for a considerable reduction of the vibrationalslefethe main
system but two resonant frequencies appear, close to the sintonizetjoancy at
which the undesired vibrational levels occurs. Interestingly, if oneidenssa DVR
but now includes viscous damping, it is possible to choose values of spdng a
damping constant& andc respectively, in such a manner that the vibrational level of
the main system is reduced over a range of frequencies and not th@ydasturbing,
sintonization frequency.

This was shown by Den Hartog in a now classical paper [2] takivanéage of
the existence of “fixed” or “invariant” points in the frequencypmsse function
(FRF). The desired natural frequency of DVR must be given by
—_ a‘O

1+ u
wherewy, is the DVR’s frequency that gives equal amplitude at the fixed poits,
the host’s resonance frequency, and the ratio between the DVR’s and the host’s
mass. The expression for the DVR’s optimal damping ratio is

o= | H
8+ L)

where &qp is the DVR’s damping ratio defined &s= c/(2mf), ¢, m andf are the
DVR’s damping, mass and frequency, respectively. As a consequenitedihency
response function (FRF) of the whole system is relativelynfitit no new resonance
appearing.

Later Jacquot [3] obtained the optimized governing parameters of degnee
of freedom DVR when the main system is a Bernoulli-Euler bedhmout internal
damping by modelling the behavior of the beam using a single mode ofionbra
Jacquot’s approach makes use of the fixed point methodology in the frequency
response function. One obtains now

a

o

W= —
1+ ugr(x)
being ¢ is the mode shape of the structure ang ¥he point where the DVR is
attached. On the other side, the damping coefficient is giving by

£ - \/ 3Ue(X)
op

8L+ ¢ (%))

Thompson [4] analysed a primary system with internal damping bysnea
the frequency locus method. The construction of the frequency loci fayetieral
system leads to the determination of graphical criteria foogtenization problem.
A different concept, the use of a cruciform dynamic vibration absonele of two
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free-free beams rigidily interconnected at the middle crodsoses due to Snowdon

[5].

The problem of a tuned mass damper attached to a multiple-dedreeddm
(MDOF) main system has also been studied extensively. In aeeepnt paper Ozer
and Royston [6] presented an extension of Den Hartog approach to mudte-adg
freedom undamped main system. Multiple dynamic absorbers have been pimposed
several authors. In a recent work Rice [7] showed the design ofplautliscrete
vibration absorber systems for broadband applications. Rade and Stefieod@}ed
a general methodology for the optimum selection of DVR paramsteras to
guarantee the efficiency of those devices over a previously selected frequency band

The goal of the present study is to present a new optimizaticariwnt for
intervening parameters of a DVR by extending the concept of fixedspioi the case
where the main system is an internally damped beam and the D&nposed of a
multiple degree of freedom discrete system with viscous damping.

PROBLEM STATEMENT

In this paper the theory is applied to the case where the maatusé is a beam with
simply supported boundary conditions and the DVR consists on 1 or 2dof system, s
figure 1. It is well known that the dynamic of a continuous system eduplth a
discrete one can be developed by the assumed modes method [9].
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v

AR\ Figure 1. System under study

The basicsteps are simplay(x,t) is expressed as superposition of modal amplitudes
of host structure

W)=Y ¢ (a0 )

where g(x) is the mode shape of the simple supported beang;éihdre generalized
coordinates, which depend dn The total kinetic energy, strain and dissipation
functions are

1L o o . 1L 1<
T :_ZMi G +_thztz V:_ZMi o o +_Zkt(zt - 2y)° (2-3)
293 23 23 23

1G5 1 .
D:—ZCi Qiz +_th (Zt _ZOt)2 (4)
293 2=

z andzy are the coordinates of the mass and the other end of the spring. The
Lagrange equations are
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whereA; are Lagrange’s multipliers and subscrigs the number of restrictions
of the problem, the generalized for@g is F €' ¢ (x,) beingx the point where

force is applied. Replacing the expressionTpl/, D and Qx in eq.(5), Lagrange’s
eguations are obtained.
The restrictions are given by

=Y 2(x) Q1) 2 =0 ©

which allow the eliminations of redundant coordesabf the problem. Substituting
the equations (1) to (4) in Lagrange’s equatioesafpuation of motion are obtained.

MI{a}+[cl{a}+[K[{a}=1{ 1, }+{ 1.} (7)

[M]hxn= diag (M))is the modal mass matrix, [, = diag (2 & w Mi) the modal
damping and [K]x » = diag («®M)) the stiffness matrix. The primary force is an
external harmonic excitatiorfgn x .= F € “ {ax)}, {@)}n x ={@(X)... ()}’

{fnx =[Anxd Fetnx1 {Febrx1= '[Kabs]rxr[@Trxn{Q}nxl

Assuming harmonic motion, =g, €“" the final expression is

{a=(A+ Ak )" Fex} ®)

where [A],,. =([K]-«?[M]+iw[C]) and [¢],,, is the matrix of modal amplitudes
Finally, the displacement of the system at pgirtan be expressed as

W(x,)=Y @),

The performance of both, uncoupled and coupled ngytin 2dof DVR will be
compared in the present study, see figure 2.

@ m ™ oL LA
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|
Figure 2. (a) uncoupled 2 dof DVR (b) coupled 2 dof DVR

nxn

One must use the dynamic stiffness of each tyf@@R in expression (8)

a) uncoupled 2dof Kang] = diag (K;) where

_ -Cffzm(l’fizfm(w/%)) __ G _
(e )rizg (we) T ama, T

al

b) coupled 2dof
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CRITERION OF OPTIMIZATION

Using the model previously described it is possitdestudy the influence of the
parameters of DVR in its performance, from the oardf vibration viewpoint.

The determination of the optimization parameterg dbf DVR is a task which
from an optimization viewpoint requires minimizatiof an objective function which
depends upoRy,kp,C1,Co, My, My (OF Mg, le), X1, Xo. This constitutes a rather complex
problem which can be simplified taking into accosntne practical considerations.
Mass or inertia properties of the DVR constitutepasameter whose influence is
uniform since to a larger mass corresponds a laeghrction, in the entire range of
frequencies. It is convenient to fix its value ag @f the mass of the principal
structure. Regarding the position of the absorbee onust clarify that it is a
parameter influenced by the dynamic of the systemesaccording to the mode of
vibration one will have a resulting amplitude oétBVR’s force. On the other hand
there may be locations which are not readily adblessDue to these reasons it was
decided that the objective function depends onlgnuphe elastic and damping
constants.

The existence of fixed points in the FRF allows fbe uncoupling of the
problem in two phases:

- sintonization stage

- flattering of the FRF curve

Sintonization

If the main structure does not possess dampingdetermines kand k in such a
manner that the fixed points P and Q acquire theesardinate, see figure 3 (a). On
the other hand, if the main structure possessemiaitdamping the fixed points does
not exist. However, if damping is small, s&y0.01, the curves corresponding to
different values of damping pass through near pofdhce two values of damping
are selected and provided that the ordinates bal.egupoints where they cross, k
and k can be calculatedFigure 3 illustrates the situation wherg=@=0 and
C1=Cp=00.
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Figure 3.-Fixed pointsin FRF. Beam without internal damping (a)and with internal
damping(b)

Flattering of the FRF curve

Once the sintonization stage is completed the skt consists on obtaining a
robust solution of the problem. In order to accasiplthis one must select the
appropriate damping coefficients. The idea is yaslmple since once P and Q
acquire the same ordinate value one must obtaiand ¢ such that the curve is
flattened between the crossing points.

To carry this out one performs the optimizatiortvio stages. The first one uses
as objective function

(e e) =2 Ww=a,6.¢.)+ Y W(w=a.c,c)

where in each summation one selects N frequentise ¢o each one of the
resonances that are pretended to control.

In this stage one obtains values @mfand c; which minimize the objective
functionf; but do not satisfy the robustness requirementsfigare 5 (a). Then, it is
decided to perform a second stage which minimites “tlistance” between the
displacement amplitude and the average betweem#éxémum and minimum of the
curve in the neighborhood of each resonance frayuehe second objective
functionf; is given by

fo(C &) =2 W(w=,6,6,) = A+ Y W(w= w,6,¢,) - A

the results are shown in figure 5 (b)

RESULTS

In the previous section, the new criterion to opgenthe parameters of dynamic
vibration absorber was presented. Here this apiteis applied to show the versatility
and usefulness of it.
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Figure5.- (a) FRF after the first optimization. (b)FRF after the sencond optimization
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Influence of position of 1 dof DVR

First we applied the methodology to study the iefice of position of a 1 dof DVR to
control the first resonance frequency of a simplyorted beam.
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Figure 6 Application of the criterion to a simply supported beam with a 1dof DVR to control
the first frequency at different positions

Comparison between coupled and uncoupled DVR

As a second implementation of the proposed critesi@omparison between coupled
and uncoupled 2 dof DVR, at different position, sinewn.
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Figure 7.- Comparison of reduction between 2dof coupled and uncoupled DVR .

CONCLUSIONS

In this work, a new criterion to optimize the pamders of dynamic vibration
redistributers is presented. This criterion extetidsfixed points theory to the case
where internal damping is present in the main stirec It was used successfully to
investigate the performance of the 1 dof and 2R at different localizations.

The theory does not require and analytical formottato obtain a solution, for
this reason FEM data would be equally used as s&ehuafdhe structure with similar
results.

For the sake of simplicity the main structure amel DVR were considered of a
particular type but others systems could be stuidiedstraightforward manner.
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