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Abstract 
The dynamic vibration absorbers (DVA) are simple and traditional devices used very 
commonly for vibration suppression. In this work a theoretical analysis of a dynamic 
vibration absorber attached to a viscously damped beam is presented. 
The DVA is composed by several one degree of freedom systems, its principal 
advantage is that it is possible to control several modes of the principal structure 
simultaneously. 
A new criterion is introduced to optimize the parameters of the device with the 
objective of reducing the motion of certain points of the beam. 
The mathematical model is based on the Assumed-Modes Method which makes use 
of Lagrange’s multipliers to take into account the constraints introduced by the 
absorber and the optimization is performed by means of the “simulated annealing” 
technique. 
The proposed method consists on minimizing the amplitude of vibration in 
predetermined points of the beam considering a broadband attenuation and using Den 
Hartog’s proposals. 
Cases studied show the influence of the position of the DVA relative to the point 
where the motion is desired to be reduced is considered. 

INTRODUCTION 

The dynamic vibration absorber (DVA) is a technical device, in principle, quite 
simple, which advantageously couples vibrations between the main system (discrete 
or continous) and a discrete, subsidiary system having as a goal the reduction of 



S. A. Vera and M. Febbo  

vibrational phenomenon in the main system. It is important to point out that some 
authors define the device as “vibration neutraliser”[1] since the vibrations of the main 
system are not absorbed but reduced in it. On the other, hand the vibrational levels are 
increased in the subsidiary system. It could also be called “dynamic vibration 
redistributer”(DVR) which philosophically corresponds to the actual phenomenon if 
damping is not considered. 

The simplest version of a DVR is an undamped one degree of freedom system. 
The device allows for a considerable reduction of the vibrational levels of the main 
system but two resonant frequencies appear, close to the sintonization frequency at 
which the undesired vibrational levels occurs. Interestingly, if one considers a DVR 
but now includes viscous damping, it is possible to choose values of spring and 
damping constants, k and c respectively, in such a manner that the vibrational level of 
the main system is reduced over a range of frequencies and not only at the disturbing, 
sintonization frequency. 

This was shown by Den Hartog in a now classical paper [2] taking advantage of 
the existence of “fixed” or “invariant” points in the frequency response function 
(FRF). The desired natural frequency of DVR must be given by 
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where ωa is the DVR’s frequency that gives equal amplitude at the fixed points, ω0 is 
the host’s resonance frequency, and µ is the ratio between the DVR’s and the host’s 
mass. The expression for the DVR’s optimal damping ratio is 
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where ξop is the DVR’s damping ratio defined as ξ = c/(2mf), c, m and f are the 
DVR’s damping, mass and frequency, respectively. As a consequence the frequency 
response function (FRF) of the whole system is relatively flat with no new resonance 
appearing. 

Later Jacquot [3] obtained the optimized governing parameters of a one degree 
of freedom DVR when the main system is a Bernoulli-Euler beam without internal 
damping by modelling the behavior of the beam using a single mode of vibration. 
Jacquot’s approach makes use of the fixed point methodology in the frequency 
response function. One obtains now 
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being φi is the mode shape of the structure and xi is the point where the DVR is 
attached. On the other side, the damping coefficient is giving by 
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Thompson [4] analysed a primary system with internal damping by means of 
the frequency locus method. The construction of the frequency loci for the general 
system leads to the determination of graphical criteria for the optimization problem. 
A different concept, the use of a cruciform dynamic vibration absorber made of two 
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free-free beams rigidily interconnected at the middle cross section is due to Snowdon 
[5]. 

The problem of a tuned mass damper attached to a multiple-degree-of-freedom 
(MDOF) main system has also been studied extensively. In a very recent paper Ozer 
and Royston [6] presented an extension of Den Hartog approach to multi-degree-of-
freedom undamped main system. Multiple dynamic absorbers have been proposed by 
several authors. In a recent work Rice [7] showed the design of multiple discrete 
vibration absorber systems for broadband applications. Rade and Steffen [8] proposed 
a general methodology for the optimum selection of DVR parameters so as to 
guarantee the efficiency of those devices over a previously selected frequency band 

The goal of the present study is to present a new optimization criterium for 
intervening parameters of a DVR by extending the concept of fixed points in the case 
where the main system is an internally damped beam and the DVR is composed of a 
multiple degree of freedom discrete system with viscous damping.  

PROBLEM STATEMENT 

In this paper the theory is applied to the case where the main structure is a beam with 
simply supported boundary conditions and the DVR consists on 1 or 2dof system, see 
figure 1. It is well known that the dynamic of a continuous system coupled with a 
discrete one can be developed by the assumed modes method [9].  
 
 
 
 
 
 

Figure 1. System under study 

The basic steps are simple: w(x,t) is expressed as superposition of modal amplitudes 
of host structure  
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where φi(x) is the mode shape of the simple supported beam and qi(t) are generalized 
coordinates, which depend on t. The total kinetic energy, strain and dissipation 
functions are 
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zt and z0t are the coordinates of the mass and the other end of the spring. The 
Lagrange equations are  

DVRw 
x 



S. A. Vera and M. Febbo  

 rnk
s

f
Q

s

V

s

D

s

T

td

d r

t k

t
tk

kkk

2,...1
1

+=
∂
∂+=

∂
∂+

∂
∂−









∂
∂

∑
=

λ
&&

  (5) 

where λt are Lagrange’s multipliers and subscript r is the number of restrictions 
of the problem, the generalized force Qk is )( fk

ti xeF φω  being xf  the point where 

force is applied. Replacing the expression of T, V, D and Qk in eq.(5), Lagrange’s 
equations are obtained.  

The restrictions are given by 
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which allow the eliminations of redundant coordinates of the problem. Substituting 
the equations (1) to (4) in Lagrange’s equations the equation of motion are obtained. 
 [ ]{ } [ ]{ } [ ]{ } { } { }sp ffqKqCqM +=++ &&&  (7) 

[M] n x n = diag (Mi)is the modal mass matrix, [C]n x n = diag (2 ξi ωi Mi)  the modal 
damping and [K]n x n = diag (ωi

2Mi)  the stiffness matrix. The primary force is an 
external harmonic excitation {fp} n x 1= F ei ωt {φ(xf)},  {φ(xf)} n x 1={φ1(xf)… φn(xf)}

T   
{ fs} n x 1=[φ]n x r{ Fe} n x 1  {Fe} r x 1= -[Kabs]r x r [φ]T
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 where  [ ] [ ] [ ] [ ]( )CiMKA nxn ωω +−= 2  and  [ ] rxnφ  is the matrix of modal amplitudes  

Finally, the displacement of the system at point xa can be expressed as 

 ∑
=

=
n

i
aaia qxxW

1

)()( φ  

The performance of both, uncoupled and coupled by inertia 2dof DVR will be 
compared in the present study, see figure 2. 
 
(a)                                                                   (b) 
 
 
 
 
  

Figure 2. (a) uncoupled 2 dof DVR (b) coupled 2 dof DVR 

One must use the dynamic stiffness of each type of DVR in expression (8) 
 
a) uncoupled 2dof  [Kabs]= diag (Ki) where  
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b) coupled 2dof 
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CRITERION OF OPTIMIZATION 

Using the model previously described it is possible to study the influence of the 
parameters of DVR in its performance, from the control of vibration viewpoint.  

The determination of the optimization parameters of 2 dof DVR is a task which 
from an optimization viewpoint requires minimization of an objective function which 
depends upon k1,k2,c1,c2, m1, m2 (or me, Ie), x1, x2. This constitutes a rather complex 
problem which can be simplified taking into account some practical considerations. 
Mass or inertia properties of the DVR constitutes a parameter whose influence is 
uniform since to a larger mass corresponds a larger reduction, in the entire range of 
frequencies. It is convenient to fix its value as 0.1 of the mass of the principal 
structure. Regarding the position of the absorber one must clarify that it is a 
parameter influenced by the dynamic of the system since according to the mode of 
vibration one will have a resulting amplitude of the DVR’s force. On the other hand 
there may be locations which are not readily accessible. Due to these reasons it was 
decided that the objective function depends only upon the elastic and damping 
constants. 

The existence of fixed points in the FRF allows for the uncoupling of the 
problem in two phases: 

- sintonization stage 
- flattering of the FRF curve 

Sintonization 

If the main structure does not possess damping one determines k1 and k2 in such a 
manner that the fixed points P and Q acquire the same ordinate, see figure 3 (a). On 
the other hand, if the main structure possesses internal damping the fixed points does 
not exist. However, if damping is small, say ξ=0.01, the curves corresponding to 
different values of damping pass through near points. Once two values of damping 
are selected and provided that the ordinates be equal, at points where they cross, k1 
and k2 can be calculated. Figure 3 illustrates the situation where c1=c2=0 and 
c1=c2=∞.  
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Figure 3.-Fixed points in FRF. Beam without internal damping (a)and with internal 

damping(b)  

Flattering of the FRF curve 

Once the sintonization stage is completed the next step consists on obtaining a 
robust solution of the problem. In order to accomplish this one must select the 
appropriate damping coefficients. The idea is fairly simple since once P and Q 
acquire the same ordinate value one must obtain c1 and c2 such that the curve is 
flattened between the crossing points. 

To carry this out one performs the optimization in two stages. The first one uses 
as objective function 
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where in each summation one selects N frequencies close to each one of the 
resonances that are pretended to control. 

In this stage one obtains values of c1 and c2 which minimize the objective 
function f1 but do not satisfy the robustness requirements, see figure 5 (a). Then, it is 
decided to perform a second stage which minimizes the “distance” between the 
displacement amplitude and the average between the maximum and minimum of the 
curve in the neighborhood of each resonance frequency. The second objective 
function f2 is given by 
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the results are shown in figure 5 (b) 

RESULTS 

In the previous section, the new criterion to optimise the parameters of dynamic 
vibration absorber was presented. Here this criterion is applied to show the versatility 
and usefulness of it.  

 

P Q 

(a) 
(b) 
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Figure 5.- (a) FRF after the first optimization. (b)FRF after the sencond optimization 

Influence of position of 1 dof DVR 

First we applied the methodology to study the influence of position of a 1 dof DVR to 
control the first resonance frequency of a simply supported beam.  

  

 

 

Figure 6 Application of the criterion to a simply supported beam with a 1dof DVR to control 
the first frequency at different positions 

Comparison between coupled and uncoupled DVR 

As a second implementation of the proposed criterion a comparison between coupled 
and uncoupled 2 dof DVR, at different position, are shown. 

Bare beam Bare beam (a) (b) 
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Figure 7.- Comparison of reduction between 2dof coupled and uncoupled DVR .  

CONCLUSIONS 

In this work, a new criterion to optimize the parameters of dynamic vibration 
redistributers is presented. This criterion extends the fixed points theory to the case 
where internal damping is present in the main structure. It was used successfully to 
investigate the performance of the 1 dof and 2 dof DVR at different localizations.  

The theory does not require and analytical formulation to obtain a solution, for 
this reason FEM data would be equally used as a model of the structure with similar 
results. 

For the sake of simplicity the main structure and the DVR were considered of a 
particular type but others systems could be studied in a straightforward manner. 
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