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Abstract
A method is given for evaluating acoustic scattering by an arbitrary irregular surface with
spatially varying impedance. This allows examination of the effects of impedance variation
and the resulting modification of scattered field. Expressions are derived for the scattered field
itself, and for the mean field when the impedance varies randomly.

INTRODUCTION

Many problems in acoustic propagation over irregular terrain are complicated by the presence
of impedance variation, and it is often important to identify the scattering effects due to this,
or to characterise the surface properties from the scattered field We aim here to provide an
efficient means to calculate such effects, and where possible to derive simple descriptions of
the resulting coherent or mean field. In order to do this an operator expansion is used: Surface
pressures (from which scattered fields are determined) are expressed as the solution of an
integral equation, in which the influence of impedance variation is separated. The solution is
written in terms of the inverse of the governing integral operator, and provided impedance
variation is not too large this inversion can be expanded about the leading term. This provides
convenient semi-analytical expressions for scattered fields and equivalent effective boundary
conditions for the coherent fields. It also allows efficient evaluation of the solution in cases
which would otherwise be computationally intractable, especially for low grazing angles.

The method and results will be described for 2-dimensional problems, but the extension
to the 3-dimensional case is straightforward.



GOVERNING EQUATIONS

Consider the acoustic field above an irregular surface with varying impedance in a 2-
dimensional medium, with coordinates(x, z) wherex is the horizontal andz the vertical,
directed upwards. The incident fieldψ is assumed to be time-harmonic, with time-dependence
exp(−iωt), say, which is henceforth suppressed. Denote the surface profile byζ(x), with spa-
tially varying impedanceZ(x) = Z0 +Zr(x) whereZ0 is a constant reference value. (Where
ensemble averages are taken it will be assumed thatZr is continuous, statistically stationary
in x, and has mean zero.) It will also be assumed thatZr is not large compared withZ0, in
the sense that the root mean square (r.m.s.) of its modulus isless than|Z0|. Everywhere be-
low, angled brackets< � > (or for compactness an overbar) denotes ensemble averages with
respect to impedance variation.

The fieldψ above the surface obeys the Helmholtz wave equation(∇2 + k2)ψ = 0

wherek is the wavenumber. Denote byG the free space Green’s function, so that (in the
2-dimensional case)G is the zero order Hankel function of the first kind,

G(r, r′) =
1

4i
H

(1)
0 (k|r − r

′|). (1)

The total fieldψ along the surface is then given by the solution of a Helmholtzintegral equa-
tion:

ψinc(rs) =
1

2
ψ(rs) −

∫

z=ζ(x)

[

∂G(rs, r
′)

∂n
+
ik0G(rs, r

′)

Z0 + Zr(x′)

]

ψ(r′)dS′. (2)

wherers here is an arbitrary surface point(x, ζ(x)), andr
′ = (x′, ζ(x′)). Elsewhere in the

upper half space the field can be written as a boundary integral:

ψ(r) =

∫

z=ζ(x)

[

∂G(r, r′)

∂n
+

ik0G(r, r′)

Z0 + Zr(x′)

]

ψ(r′)dS′. (3)

where nowr = (x, z) represents a general point in the upper medium. (The right-hand-side
of equation (2) is an operator from functions on the real lineto itself, and the same holds for
(3) if r is, for example, restricted to a line at fixedz parallel tox.)

SOLUTIONS FOR VARYING IMPEDANCE

Flat surfaces

We first consider the simpler case of a field incident on a varying impedance surface when
the surface is flat, say atz = 0. This has been studied by many authors in various parameter
regimes and is included here simply in order to introduce thetechnique to be generalised later
to rough surfaces.

Noting that
1

Z0 + Zr
≡ 1

Z0
− Zr

Z0(Z0 + Zr)
, (4)

equation (2) can be written
ψinc(r) = (A0 + A1)ψ(r), (5)



wherer lies on the surface,A0 is defined by

A0(�) =
1

2
(�) −

∫

z=0

[

∂G(r, r′)

∂z
+
ik0G(r, r′)

Z0

]

(�)dS′ (6)

andA1 is given by

A1(�) =
ik0

Z0

∫

z=0

Zr(x
′)G(r, r′)

Z0 + Zr(x′)
(�)dS′. (7)

The solution to (5) represents the total fieldz = 0; from this the field elsewhere can be
obtained by writingψ(r) as a superposition of plane waves without recourse to the integral
(3).

Suppose for the moment that the impedance is constant,Z = Z0, so thatA1 vanishes.
For an incident plane wave, sayψθ(x, z) = exp(ik[sin θx−cos θz]) at an angleθ with respect
to the normal, the solution is explicitly

A−1
0 ψθ(x, 0) = [1 +R(α)] exp(iαx), (8)

whereα = k sin θ, β =
√
k2 − α2, andR is the reflection coefficient

R(α) =
βZ0 − k0

βZ0 + k0
. (9)

ThusA−1
0 f can be found forarbitraryf(x) by expressingf as a superposition of plane waves

and applying (8). If impedance variationZ(x) = Z0 + Zr(x) is now reintroduced, then (5)
has formal solution

ψ(r) = (A0 + A1)
−1ψinc(r) (10)

which may be used to examine the effect of the varying impedance. The inverse can be ex-
panded to give

(A0 + A1)
−1 ≡ A0

−1 − (A0
−1A1)A0

−1 + (A0
−1A1)

2A0
−1 − . . . (11)

and as by assumption the effect of the termA1 is not large, the series converges and the
resulting equation can be truncated to obtain an approximation toψ(r):

ψ(r) ∼= A−1
0 ψinc(r) − A−1

0

[

A1A−1
0 ψinc(r)

]

. (12)

The first term on the right of equation (12) is the known specular reflection from a constant
impedance surface atz = 0; the second models its diffuse modification due toZr, i.e. diffrac-
tion effects.

Specifically, from (8) and (7) we obtain

A1(A−1
0 ψinc(r)) =

ik0(1 +R(α))

Z0

∫

z=0

Zr(x
′)G(r, r′)

Z0 + Zr(x′)
eiαx′

dS′. (13)

As A−1
0 represents reflection by constant impedance, (13) can be thought of as a secondary

‘driving field’ for the diffuse term in (12). This field consists of a set of plane waves de-
termined by the Fourier transform of the integral in (13). Anexample is shown in Figure 1
comparing this term in (12) with the diffuse part of the exactnumerical solution.Zr here
has an rms value of aroundZ0/4. (Note that the incident field has been tapered to minimise
edge-effects.)
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Figure 1:Comparison of exact and approximate solutions for non-specular component of
scattered field for a flat surface with varying impedance.

As the solution ofA−1
0 is known the expression (12) can be evaluated directly, for one

or many realisations, and avoids a potentially expensive numerical inversion.

Irregular surfaces
The results above are now extended to obtain expressions forthe effect of impedance variation
on scattering by an arbitrarily rough surface. This situation is considerably more complicated
because, having obtained from (2) the field along the irregular boundary, the scattered field
must be obtained by further application of the boundary integral (3) involving variation in
both surface profile and impedance.

For a rough surfacez = ζ(x) with impedanceZ = Z0 + Zr(x) integral equation (2)
becomes

ψinc(r) = (C0 + C1)ψ(r), (14)

where

C0(�) =
1

2
(�) −

∫

z=ζ(x)

[

∂G(r, r′)

∂n
+
ik0G(r, r′)

Z0

]

(�)dS′. (15)

andC1 contains the dependence onZr,

C1(�) =
ik0

Z0

∫

z=ζ(x)

Zr(x
′)G(r, r′)

Z0 + Zr(x′)
(�)dS′. (16)

Even when the impedance is constant, so thatC1 = 0, there is no longer a closed-form ana-
lytical solution and in generalC−1

0 ψinc(r) must be evaluated numerically.
Applying the expansion analogous to (11) to(C0 + C1)

−1 and truncating gives the
approximation for the surface field

ψ(r) ∼= C−1
0 ψinc(r) − C−1

0

[

C1C−1
0 ψinc(r)

]

. (17)

The second term on the right again accounts for the effect of impedance variationZr and its
interaction with the irregular surface, and the resulting diffraction. The first term corresponds
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Figure 2:Comparison of exact numerical solution and approximation for scattered field on
rough profilez = ζ with varying impedanceZ = Z0 + Zr.

to constant impedance; once this has been obtained the second term is evaluated by applying
C1 and solving again forC−1

0 , with the term in square brackets acting as a new driving field.
When full numerical inversion ofC0 is necessary, this offers no immediate computational
advantage for a single realisation ofζ(x) andZ(x). However, there are important special
cases including low grazing angles for which highly efficient methods are available which
cannot be applied directly to the full integral equation (14). Figure 2 compares the surface
field term−C−1

0 C1C−1
0 ψinc(r) with the corresponding component of the ‘exact’ numerical

solution of (14). Here the angle of incidence is around5o, the ratio of r.m.s. surface height
to wavelength< ζ2 >1/2 /λ = 2/3, and the ratio of r.m.s. impedance variation to reference
valueZ0 is around 1/6. Agreement is again seen to be very close.

This formulation conveniently describes the balance between scattering mechanisms,
and is efficient for calculation of the field statistics with respect to impedance variation, as
well as allowing theoretical estimates of the field statistics to be obtained.

Mean field
As the impedance is more often known statistically than individually, evaluation of the mean
field is important. For flat surfaces the mean field with respect to an ensemble of impedance
realisations obeys an effective impedance condition. Thusfor an incident plane wave the
mean scattered field is specular, but with an ‘effective reflection coefficient’ depending on
incident angle. For an arbitrary surface profile, the coherent field is no longer specular, and its
description is therefore more complex. This raises a natural question: is each scattered angle
modified by an effective reflection coefficient which is independent of the surface profile?
This is found not to be the case.

At a point r along a given horizontal line above the surface, the field is related to the
surface values via the integral (3). If the integral operator here, sayC′, is split as before into



its constant and varying impedance partsC′

0 andC′

1, then using (17), (3) can be written

ψ = C′C−1ψinc

= (C′

0 + C′

1)(C0 + C1)
−1ψinc

∼= (C′

0 + C′

1)(C−1
0 − C−1

0 C1C−1
0 )ψinc

∼=
[

C′

0C−1
0 − C′

0C−1
0 C1C−1

0 + C′

1C−1
0 )

]

ψinc (18)

where we have neglected a term of higher order inC1. We can now take an ensemble average of
(18) with respect to impedance variation, to get the mean modification by impedance variation
of the scattered fields.

< ψ > ∼=
[

C′

0C−1
0 + C′

1C−1
0 − C′

0C−1
0 C1C−1

0 )
]

ψinc (19)

whereC1 denotes the mean< C1 >, C′
1 is defined similarly. The expression (19) can be

regarded as semi-analytical: it gives the mean field for an arbitrary irregular surface with
randomly varying impedance, but asC1, C′

1 depend on the surface profileζ(x), numerical
evaluation cannot be avoided. This gives rise to a coherent field spectrum with effective coef-
ficients depending on the surface profile. The approximation(19) is equivalent to the solution
ψ̃, say, for scattering by the surfaceζ(x) but with constant effective impedanceZe. This is
easily seen by formulating this equivalent problem in termsof integral operators where it
becomes

ψ̃ = (C′

0 + C′
1)(C0 + C1)

−1ψinc, (20)

and then solving as before and comparing terms with (19).

SUMMARY

Acoustic scattering by an irregular surface with random spatially varying impedance has ben
considered. We have sought an efficient method for calculating the field while allowing con-
venient estimation of the effects of impedance variation and its interaction with the surface
profile. The expressions obtained also provide estimates ofthe mean field with respect to
impedance variation. For rough surfaces these are semi-analytical in the sense that numer-
ical evaluation of integrals is needed. (In the case of a flat surface, for which the coherent
field is specular, this takes the form of an effective impedance; this is also approximately
true for a given irregular surface, but the behaviour is morecomplicated because of the non-
specular nature of the scattered field.) Although for simplicity we have restricted attention to
2-dimensional problems, treatment for 3-dimensional scattering is almost identical.
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