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Abstract

A method is given for evaluating acoustic scattering by dit@ry irregular surface with
spatially varying impedance. This allows examination & #ffects of impedance variation
and the resulting modification of scattered field. Expressare derived for the scattered field
itself, and for the mean field when the impedance varies mrahdo

INTRODUCTION

Many problems in acoustic propagation over irregular teraae complicated by the presence
of impedance variation, and it is often important to identtie scattering effects due to this,
or to characterise the surface properties from the scdtfiézll We aim here to provide an
efficient means to calculate such effects, and where pestilderive simple descriptions of
the resulting coherent or mean field. In order to do this amaipeexpansion is used: Surface
pressures (from which scattered fields are determined)>qmegsed as the solution of an
integral equation, in which the influence of impedance vaneis separated. The solution is
written in terms of the inverse of the governing integral rap@r, and provided impedance
variation is not too large this inversion can be expandedihe leading term. This provides
convenient semi-analytical expressions for scattereddfiehd equivalent effective boundary
conditions for the coherent fields. It also allows efficievdlaation of the solution in cases
which would otherwise be computationally intractable,ezsglly for low grazing angles.

The method and results will be described for 2-dimensiorablems, but the extension
to the 3-dimensional case is straightforward.



GOVERNING EQUATIONS

Consider the acoustic field above an irregular surface watying impedance in a 2-
dimensional medium, with coordinatés, z) wherex is the horizontal and the vertical,
directed upwards. The incident fiefdis assumed to be time-harmonic, with time-dependence
exp(—iwt), say, which is henceforth suppressed. Denote the surfatieefyy ((x), with spa-
tially varying impedance’ (x) = Zy + Z,(z) whereZ is a constant reference value. (Where
ensemble averages are taken it will be assumedZ4ha continuous, statistically stationary
in z, and has mean zero.) It will also be assumed fhais not large compared witl, in

the sense that the root mean square (r.m.s.) of its modulassshan Z,|. Everywhere be-
low, angled brackets: . > (or for compactness an overbar) denotes ensemble averidthes w
respect to impedance variation.

The fieldv above the surface obeys the Helmholtz wave equafioh+ &%)y = 0
wherek is the wavenumber. Denote Ity the free space Green’s function, so that (in the
2-dimensional casey is the zero order Hankel function of the first kind,

1
G(r,r') = 4—Z,H(§1)(l~c|r —r)). 1)
The total fieldyy along the surface is then given by the solution of a Helmhotegral equa-

tion:
/ [8G(rs,r’) ikoG(rs, 1)
z=((x)

1
VYine(rs) = z(rs) — on Zo + Zp(2)

2

] W(r')ds'. )

wherer; here is an arbitrary surface poift, ((z)), andr’ = (2/,{(2’)). Elsewhere in the
upper half space the field can be written as a boundary irtegra

_ aG(I" r’) ik’oG(I‘, I‘/) . ,
v /z=<(m> [ on 7 +ZT(;1:/)] (r)ds'. 3)

where nowr = (z, z) represents a general point in the upper medium. (The rightHside
of equation[(R) is an operator from functions on the real tméself, and the same holds for
@) if r is, for example, restricted to a line at fixegarallel toz.)

SOLUTIONS FOR VARYING IMPEDANCE
Flat surfaces

We first consider the simpler case of a field incident on a vgryinpedance surface when
the surface is flat, say at= 0. This has been studied by many authors in various parameter
regimes and is included here simply in order to introducdaghbnique to be generalised later
to rough surfaces.

Noting that
1 1 Zy

=— - — 4
Zo+ 2,  Zy  Zo(Zo+ Zy) ®

equation[(R) can be written
?ﬁmc(l‘) = (AO + AlWU‘)» (5)



wherer lies on the surfaced, is defined by

Aoy = 50— [ 25T 4 OLT (5 ©

and.A; is given by
kg / Z(2")G(r,r") ,
Ai(h) = — ————_~(.)dS". 7
The solution to[(b) represents the total field= 0; from this the field elsewhere can be
obtained by writingy'(r) as a superposition of plane waves without recourse to tlegrial

Q).
Suppose for the moment that the impedance is constast,Z, so that4; vanishes.

For an incident plane wave, say(z, z) = exp(ik[sin fz — cos §z]) at an anglé with respect
to the normal, the solution is explicitly

Ag e (x,0) = [1+ R()] exp(ioz), (8)
wherea = ksin6, 3 = Vk?2 — o2, andR is the reflection coefficient
BZy — ko
R(o) =222 2 9
) = 7 ©)

ThusAglf can be found foarbitrary f (x) by expressing’ as a superposition of plane waves
and applying[(B). If impedance variatidf(z) = Zy + Z,.(x) is now reintroduced, theil(5)
has formal solution

P(r) = (Ao + A1) Wine(r) (10)
which may be used to examine the effect of the varying impeelaifhe inverse can be ex-
panded to give

(Ao + ./41)_1 =A, ! - (./40_1./41)./40_1 + (A0_1A1)2A0_1 — ... (112)

and as by assumption the effect of the tedn is not large, the series converges and the
resulting equation can be truncated to obtain an approioméd ¢(r):

P(r) = Ay Pine(r) — Ayt [ALAG Pine(r)] - (12)

The first term on the right of equatioi{12) is the known spactgflection from a constant
impedance surface at= 0; the second models its diffuse modification dué&/igi.e. diffrac-
tion effects.

Specifically, from[[B) and{7) we obtain

. / /

Al(A(;l?/Jmc(r)) _ ZkO(]. EOR(OZ)) /;ZO Zégx—’_)gff‘;f))ezaz’dsl (13)
As A, ! represents reflection by constant impedaricd, (13) can bglthof as a secondary
‘driving field’ for the diffuse term in[(IR). This field condss of a set of plane waves de-
termined by the Fourier transform of the integral[inl(13). é&ample is shown in Figuild 1
comparing this term in[{12) with the diffuse part of the exaomerical solutionZ, here
has an rms value of aroung, /4. (Note that the incident field has been tapered to minimise
edge-effects.)
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Figure 1:Comparison of exact and approximate solutions for non-sig@ccomponent of
scattered field for a flat surface with varying impedance.

As the solution ofA4, !'is known the expressiofi{lL2) can be evaluated directly, fier o
or many realisations, and avoids a potentially expensivearical inversion.

Irregular surfaces
The results above are now extended to obtain expressiottgefeffect of impedance variation
on scattering by an arbitrarily rough surface. This sitwais considerably more complicated
because, having obtained frofld (2) the field along the irggoibundary, the scattered field
must be obtained by further application of the boundarygir@k(3) involving variation in
both surface profile and impedance.

For a rough surface = {(x) with impedanceZ = Z;, + Z,.(z) integral equation{2)
becomes

¢inc(r) = (CO + Cl)w(r)> (14)
where ) 0C(er)  ikCle.r)
_ 1 B r,r 1koG(r, T ,
o) =30 - | " 2 BTmE) as: (15)
andC; contains the dependence 4p,
z'k:O/ Zy(2")G(r,1’) ,
Ci(s) = — ————_2(.)dS". 16
1) 20 Jo=c) Zo+ Zp(2') ©) 4o

Even when the impedance is constant, so that 0, there is no longer a closed-form ana-
lytical solution and in general; '¢/;,.(r) must be evaluated numerically.

Applying the expansion analogous foX(11)(@ + C;)~! and truncating gives the
approximation for the surface field

$(r) = Cy  Pine(r) — Co * [C1Cy  ine(r)] - (17)

The second term on the right again accounts for the effechpétlance variatiol,. and its
interaction with the irregular surface, and the resultiiffyattion. The first term corresponds
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Figure 2: Comparison of exact numerical solution and approximatmmstattered field on
rough profilez = ¢ with varying impedance = Zy + Z,.

to constant impedance; once this has been obtained thedsesramis evaluated by applying
C; and solving again fo@o‘l, with the term in square brackets acting as a new driving.field
When full numerical inversion of, is necessary, this offers no immediate computational
advantage for a single realisation ¢fz) and Z(x). However, there are important special
cases including low grazing angles for which highly effitiemethods are available which
cannot be applied directly to the full integral equatibnl)(IEigure[2 compares the surface
field term —cglclcglwmc(r) with the corresponding component of the ‘exact’ numerical
solution of [13). Here the angle of incidence is arodfidthe ratio of r.m.s. surface height
to wavelength< ¢2 >1/2 /) = 2/3, and the ratio of r.m.s. impedance variation to reference
value Zy is around 1/6. Agreement is again seen to be very close.

This formulation conveniently describes the balance betwscattering mechanisms,
and is efficient for calculation of the field statistics wigspect to impedance variation, as
well as allowing theoretical estimates of the field statsto be obtained.

Mean field

As the impedance is more often known statistically thanviddially, evaluation of the mean
field is important. For flat surfaces the mean field with resp@@an ensemble of impedance
realisations obeys an effective impedance condition. Thusan incident plane wave the
mean scattered field is specular, but with an ‘effective c&fla coefficient’ depending on
incident angle. For an arbitrary surface profile, the cohiglield is no longer specular, and its
description is therefore more complex. This raises a nlatirastion: is each scattered angle
modified by an effective reflection coefficient which is indadent of the surface profile?
This is found not to be the case.

At a pointr along a given horizontal line above the surface, the fielelsted to the
surface values via the integrél (3). If the integral operagre, say’, is split as before into



its constant and varying impedance patisandC’y, then using[(lI7)[{3) can be written

Y = C'C Wine
= (C'o+C1)(Co+C1) "ine
> (Co+C)(Ct —CyteiCy ) bine
=~ [CoCyt = CloCytCiCyt 4 CCy )] Yine (18)

where we have neglected a term of higher ordé} inVe can now take an ensemble average of
(I8) with respect to impedance variation, to get the mearifination by impedance variation
of the scattered fields.

< 1/} > = [C,QC(]_l + C_’1C0_1 - CIOCQ_IC_lCO_l)] 1/}inc (19)

whereC; denotes the mean C; >, C'; is defined similarly. The expressioli {19) can be
regarded as semi-analytical: it gives the mean field for dtrary irregular surface with
randomly varying impedance, but s, C’'; depend on the surface profi{gz), numerical
evaluation cannot be avoided. This gives rise to a cohemdtspectrum with effective coef-
ficients depending on the surface profile. The approximdfl@) is equivalent to the solution
1, say, for scattering by the surfa¢ér) but with constant effective impedancg. This is
easily seen by formulating this equivalent problem in tewhéintegral operators where it
becomes

1; = (C/O + C_,l) (CO + C_l)_ldjina (20)

and then solving as before and comparing terms \uith (19).

SUMMARY

Acoustic scattering by an irregular surface with randontiafha varying impedance has ben
considered. We have sought an efficient method for calagjatie field while allowing con-
venient estimation of the effects of impedance variatiod i interaction with the surface
profile. The expressions obtained also provide estimatdheoimean field with respect to
impedance variation. For rough surfaces these are serytiaahin the sense that numer-
ical evaluation of integrals is needed. (In the case of a tidase, for which the coherent
field is specular, this takes the form of an effective impeganhis is also approximately
true for a given irregular surface, but the behaviour is noomaplicated because of the non-
specular nature of the scattered field.) Although for sioiyliwe have restricted attention to
2-dimensional problems, treatment for 3-dimensionaltedag is almost identical.
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