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Abstract

The left-right splitting method is developed and appliegtoblems of acoustic scattering in
three dimensions. The boundary integral which governsdhsisn via the Helmholtz equa-
tion can be split into two at each point of observation, cgpomding to right- and left-going
energy. This leads to a series solution, which, under thengsson that forward scattering
is dominant, can often be truncated after one or two terms gvetrong scattering regimes.
The key advantages are (a) each term can be evaluated vekjyquith low memaory require-
ment; and (b) the terms have a straightforward physicaipnégation, which gives insight into
scattering mechanisms.

INTRODUCTION

The calculation of acoustic scattering by large objectsxtereled rough surfaces is a chal-
lenging computational problem, especially in the preserictrong multiple scattering (e.g.
[@,12,3]). This is particularly acute at low grazing anglBsundary integral methods are flex-
ible and often used for such problems but can be computdiifoinéensive and scale badly
with increasing frequency.

Here we develop the left-right splitting method and applg tb several acoustic scat-
tering problems. In this approach the unknown surface feefdst expressed as the solution
to the Helmholtz integral equation, where integration ietaover the surface. The integral
can be divided into two at each point of observation, comadmg to right- and left-going
energy. This leads to a series solution, which, under thengsson that forward scattering
is dominant, can often be truncated after one or two terms gvetrong scattering regimes.
The key advantages are that (a) each term can be evaluateduiekly with low memory
requirement; and (b) the terms have a straightforward physiterpretation, which gives in-
sight into scattering mechanisms. The approach is relateaethods recently developed for



electromagnetic scattering in 2-d and 3-d by several asiteor{4[ 5[ 17,18]. In some sense this
is motivated by the parabolic integral equation appro&aih [9

Results have been validated by comparison with "exact” migalesolution where pos-
sible, and against analytical results, and found to be tangconvergent. The method can be
used to derive scattering results for otherwise intraetabkes. The algorithm is well-suited
to parallelisation, in which case the speed scales appaigisnlinearly with the number of
processors.

In §2 the governing equations and left-right splitting appnexiion are formulated.
The numerical details and main results are show§8in

GOVERNING EQUATIONSAND LEFT-RIGHT SPLITTING

Suppose we have a sound source in a 3-dimensional half-spagth horizontal axes, y

and vertical axis directed upwards, bounded by a 2-dimensional rough su§aces(z, y)
varying about the plane = 0. S is assumed continuous and differentiable as a function of
x,y. (Exterior scattering problems and arbitrary boundaraestwe treated similarly.) A time-
harmonic acoustic wavé, with wavenumbe¥: obeying the wave equatiqiV? + k%)@ = 0

in the regionz > s(z,y), results from an incident wavé;,,. at a small grazing angle to

the horizontal plane. The axes can be chosen so that thegalimirection of propagation is

at a small angle to thér, z) plane. We assume that the surface is acoustically hard so tha
the field obeys the Neumann boundary condition; derivat@rpfessure release (Dirichlet)
surface is similar. Thu8®/0n = 0, wheren is the outward normal, an@ is the free space
Green’s functiorG(r, r’') = exp{ik|r — r’|}/4xr|r — r|. The field at a point in the medium
determined by the surface field via the boundary integral

/
(I)mc(r) = (I)(r) _ / Mq)(r/)dr/ (l)
S on
wherer = (z,y, z) andr’ = (2/, ¢/, s(2’,y')), say, so that taking the limit as— r; gives
/
CI)z'nc(rs) = (I)(rs) - / M@(r')dr' (2)
S an

wherer; = (x,y, s(z,y)). This integral is interpreted as the limit of the integrakip [1) as
r — rg because of the singularity at= r,. We can write the integration with respectitg,
and in doing so introduce an additional factointo the integrand, where

o= e (&) (%) ®

This can be solved using a method analogous to that applite telectromagnetic problem
in 2-d or 3-d [6[8]. By splitting the region of integrationtae ‘point of observation’ integral
equation[(R) is written in terms of right- and left-going o@@rsL and R with respect ta: as




wherel and R are defined by
Lot = 1= [ [ 2 )0y ' ay ©)

riw = - [ [ OO rat) o o'y ! dyf ©)

andr = (z,y,2), v = (2/,y,s(2’,y)). The solution of equatioril4) can be expanded as a
series,

®=(L+R) " Pipe=[L7" = LT'RLT + ] Qe @)

At moderate to low grazing angles the effectRfis in some sense small, so that the series
converges quickly and can be truncated. This correspongsigatly to an assumption that
surface-surface interactions are dominated by those ‘frarieft’, as might be expected in
this scattering regimelL is large compared witlR first, becausd. includes the dominant
‘diagonal’ value; second because a predominantly rigitggavave gives rise to more rapid
phase-variation in the integrand than in L. Roughly speaking this occurs becausdln (2)
the phase in the Green’s function kernel decreases as thevatien point is approached from
the left and then increases to the right; whereas the pha®ésobn average increasing. This
is easily verified numerically, and in many cases one or twaseare sufficient to provide an
accurate solution.

What is the significance of successive approximations fteid in the ray-theoretic
limit? The first iteration contains ray paths which, befazaving the surface, may have in-
teracted with the surface arbitrarily many times but onhaiforward direction. The second
includes most paths which have changed direction twicee eiec the operatoRR and again
via L~!; and so on. The first iteration therefore accounts for migltgzattering, but nate-
versible paths which can occur when incident and backscatter directie opposite; these
paths occur in pairs of equal length and therefore add catigrgiving rise to a peak in
the backscattered direction (enhanced backscattér E@312in strongly scattering regimes.
Such reversible paths show initially at the second appration.

Having obtained this series, numerical treatment by sartliscretization is straight-
forward.

NUMERICAL METHOD AND RESULTS

The immediate benefit of seridd (7) is computational: If thdage is represented using a
rectangular grid of\/ by IV points, withM transverse stepg @irection) andV in range ),
then(L + R) becomes aiM N x M N) matrix, and exact inversion would tak® M3 N3)
operations. By contrast each term of €. (7) involves inwarsf an)M x M matrix at each of

N range steps, requiring just(N M3) operations and far less memory. Assuming a fixed res-
olution per wavelength, this scales witA. There is an additional Green function evaluation
component, which also increases wih and in practice this is the dominant computational
cost in this approach (typically more than 90% whdne N).



We briefly sketch the numerical treatment: The notatignR will be used now for
the matrices representing the discretized integral opexats no confusion arises, and we
will focus on solution of the first term of7), i.e. inversiof L. We define discretized surface
coordinates:,,, y,, (for convenience using fixed step-siz&s, Ay in these directions), giving
rise to discretized surface valu€s,,.(z,, ¥m) = anm, P(Tn,Ym) = bum . The resulting
matrix L has dimensiond/ N x M N. This can be viewed as av x N lower-triangular block
matrix whose entries arg/ x M matrices. Gaussian elimination can be used to invert this
system by back-substitution. This is afrstep ‘marching’ process, in which each diagonal
M x M block is inverted in turn; this yields the solution for thekaown surface field by
‘marching’ in the positiver direction. The details of the algorithm are analogous ts¢ho
described in[[B].

Results: convergence and timings

In order to apply the approach to randomly rough surfaceseffample sea surfaces or ter-
rain), statistically stationary surfaces with Gaussiatigtics (normally distributed heights)
are generated computationally with a given spatial autetation function (a.c.f.p(£,n) =<
s(z,y) s(x + &,y +n) > where angled brackets denote ensemble averages. In theinume
cal studies we included the strongly scattering regime asas with correlation length and
r.m.s. height both comparable with a wavelength. The tag@r{ from the parallel code) were
run on a Pentium 4 3.2GHz with 1GB memory, under Linux.

The solution using two terms was compared with full or ‘ekamtersion of the bound-
ary integral, and the result is shown in Figlife 1. Becaus@é@high computational cost of
full inversion this comparison was carried out for a relalivsmall surface of2 x 12 wave-
lengths, using a grid 0of20 x 120 points. Here the r.m.s. height and correlation length are
approximately equal ta.

The convergence is illustrated by comparison of field vahleag the mid-line in the
z-direction, as can be seen in Figlile 2 for the first 4 iteratidtere the field is incident at
an angle of 4% from grazing, and extremely good agreement is produced sapiote that
the oscillatory behaviour at the left is captured at the 2utdnot the 1st iteration. It should
be noted, however, that convergence cannot be guarantead &obirtrary surface with given
statistics; for electromagnetic waves the methaod [7] gidtbdivergences apparently due to
resonant surface features.

Computation time\When the algorithm is applied to larger surfaces, the twaowrnan-
tributions to computation time at each df range steps are are/d x N matrix inversion
and a set of Green’s function evaluations. The matrix ineareemains a small percentage of
the cost throughout, and overall computation time increagth the square of the number of
unknowns M2N2,

Several strategies can be used to reduce Green’s functadnagion cost. The most
straighforward of these is as follows: A simple quadratums wnitially used to carry out
integrations using all available surface points. As thdiapaeparation increases, however,
the integrand becomes increasingly smooth as a functioranverse coordinate. Thus the
simple quadrature used initially may be replaced by highéerschemes utilizing far fewer



Left-right solution (2 terms) Full inversion

Figure 1: Comparison of surface fields by (a) iterative sofu(2 terms), and (b) full inversion
for surface with r.m.s. height and correlation length agjmately equal to\.
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Figure 2: Comparison between exact and successive ternie déft-right solution corre-
sponding to Figl11, along a line indirection, for grazing anglé5°.



points and therefore fewer Green’s function evaluations)) little loss of accuracy. This does
not reduce therderof dependence on the number of unknowns, but reduces thelieult
Even a trapezium rule, for example, operating on half thebemof points reduced the com-
putation time by a factor of 3 and resulted in errors of wellien1%. We calculated surface
fields on a desktop computer for a surfacet®h x 48\ (230,000 unknowns) in around 10
minutes, andl00A x 100\ (106 unknowns) in 180 minutes. Another possibility is to use
fast multilevel multipole. This can reduce the time-depame toO (N M log N M), but we
found this to have relatively high complexity and memorytcasd accuracy which is not
easily regulated.

ParallelisationThe algorithm is easily parallelised, and in particular ¢uadrature,
which takes up most of the computation time, can be sharech@raoy numberV,,,,. of
processors. This has been carried out using MPI on a Sunfichinga and as expected the
computation speed increases linearly Wi, ,.. Solution for around x 10° unknowns, on a
waveguide of 550\ in length and 80\ circumference, was obtained in 5.3 hours with standard
integration and under 2 hours using optimised integrator96 processors.

The method has also been applied to both exterior and intscattering problems
in various geometries, for example by acoustically larggegaides. Most such geometries
involve even better-behaved integrals, and are thereforenable to the above integration
optimisation.

SUMMARY

This paper describes the development and application détheaght splitting algorithm for
acoustic scattering by large scatterers. Results havevadieiated by comparison with “ex-
act” numerical solutions, and by examining the convergesidbe series. Although the for-
mulation is especially suited to incident fields at low gngzangles, good convergence has
been obtained at angles close to normal incidence. Prolilemising up to10° unknowns
or more can be solved on a standard desktop computer, and largeh problems in a few
hours on a parallel machine. The computational cost scaitbstihe square of the number
of unknowns, and although this can be improved by combinimegapproach with methods
such as fast multipole this has not been necessary as ingpisach the multiplier is rela-
tively small. The terms in the series represent increasidgre of surface interaction, and can
provide insight into multiple scattering mechanisms.
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