
FAST BOUNDARY INTEGRAL SOLUTION FOR ACOUSTIC
SCATTERING BY LARGE OBJECTS

O. Rath-Spivack∗ & M. Spivack

Department of Applied Mathematics and Theoretical Physics, The University of Cambridge
CB3 0WA, UK

Abstract
The left-right splitting method is developed and applied toproblems of acoustic scattering in
three dimensions. The boundary integral which governs the solution via the Helmholtz equa-
tion can be split into two at each point of observation, corresponding to right- and left-going
energy. This leads to a series solution, which, under the assumption that forward scattering
is dominant, can often be truncated after one or two terms even in strong scattering regimes.
The key advantages are (a) each term can be evaluated very quickly with low memory require-
ment; and (b) the terms have a straightforward physical interpretation, which gives insight into
scattering mechanisms.

INTRODUCTION

The calculation of acoustic scattering by large objects or extended rough surfaces is a chal-
lenging computational problem, especially in the presenceof strong multiple scattering (e.g.
[1, 2, 3]). This is particularly acute at low grazing angles.Boundary integral methods are flex-
ible and often used for such problems but can be computationally intensive and scale badly
with increasing frequency.

Here we develop the left-right splitting method and apply this to several acoustic scat-
tering problems. In this approach the unknown surface field is first expressed as the solution
to the Helmholtz integral equation, where integration is taken over the surface. The integral
can be divided into two at each point of observation, corresponding to right- and left-going
energy. This leads to a series solution, which, under the assumption that forward scattering
is dominant, can often be truncated after one or two terms even in strong scattering regimes.
The key advantages are that (a) each term can be evaluated very quickly with low memory
requirement; and (b) the terms have a straightforward physical interpretation, which gives in-
sight into scattering mechanisms. The approach is related to methods recently developed for



electromagnetic scattering in 2-d and 3-d by several authors, eg [4, 5, 7, 8]. In some sense this
is motivated by the parabolic integral equation approach [9].

Results have been validated by comparison with ”exact” numerical solution where pos-
sible, and against analytical results, and found to be robust and convergent. The method can be
used to derive scattering results for otherwise intractable cases. The algorithm is well-suited
to parallelisation, in which case the speed scales approximately linearly with the number of
processors.

In §2 the governing equations and left-right splitting approximation are formulated.
The numerical details and main results are shown in§3.

GOVERNING EQUATIONS AND LEFT-RIGHT SPLITTING

Suppose we have a sound source in a 3-dimensional half-spaceΩ with horizontal axesx, y

and vertical axisz directed upwards, bounded by a 2-dimensional rough surfaceS = s(x, y)

varying about the planez = 0. S is assumed continuous and differentiable as a function of
x, y. (Exterior scattering problems and arbitrary boundaries can be treated similarly.) A time-
harmonic acoustic waveΦ, with wavenumberk obeying the wave equation(∇2 + k2)Φ = 0

in the regionz > s(x, y), results from an incident waveΦinc at a small grazing angleθ to
the horizontal plane. The axes can be chosen so that the principal direction of propagation is
at a small angle to the(x, z) plane. We assume that the surface is acoustically hard so that
the field obeys the Neumann boundary condition; derivation for pressure release (Dirichlet)
surface is similar. Thus∂Φ/∂n = 0, wheren is the outward normal, andG is the free space
Green’s functionG(r, r′) = exp{ik|r− r

′|}/4π|r − r
′|. The field at a pointr in the medium

determined by the surface field via the boundary integral

Φinc(r) = Φ(r) −

∫

S

∂G(r, r′)

∂n
Φ(r′)dr′ (1)

wherer = (x, y, z) andr
′ = (x′, y′, s(x′, y′)), say, so that taking the limit asr → rs gives

Φinc(rs) = Φ(rs) −

∫

S

∂G(rs, r
′)

∂n
Φ(r′)dr′ (2)

wherers = (x, y, s(x, y)). This integral is interpreted as the limit of the integral ineq. (1) as
r → rs because of the singularity atr

′ = rs. We can write the integration with respect tox,y,
and in doing so introduce an additional factorγ into the integrand, where

γ(r′) =

√

1 +

(

∂s

∂x′

)2

+

(

∂s

∂y′

)2

. (3)

This can be solved using a method analogous to that applied tothe electromagnetic problem
in 2-d or 3-d [6, 8]. By splitting the region of integration atthe ‘point of observation’ integral
equation (2) is written in terms of right- and left-going operatorsL andR with respect tox as

Φinc(rs) = (L + R)Φ (4)



whereL andR are defined by

Lf(r) = f −

∫

∞

−∞

∫ x

−∞

∂G(r, r′)

∂n
f(r′) γ(r′) dx′ dy′, (5)

Rf(r) = −

∫

∞

−∞

∫

∞

x

∂G(r, r′)

∂n
f(r′) γ(r′) dx′ dy′ (6)

andr = (x, y, z), r
′ = (x′, y′, s(x′, y′)). The solution of equation (4) can be expanded as a

series,

Φ = (L + R)−1Φinc =
[

L−1 − L−1RL−1 + ...
]

Φinc. (7)

At moderate to low grazing angles the effect ofR is in some sense small, so that the series
converges quickly and can be truncated. This corresponds physically to an assumption that
surface-surface interactions are dominated by those ‘fromthe left’, as might be expected in
this scattering regime.L is large compared withR first, becauseL includes the dominant
‘diagonal’ value; second because a predominantly right-going wave gives rise to more rapid
phase-variation in the integrand inR than inL. Roughly speaking this occurs because in (2)
the phase in the Green’s function kernel decreases as the observation point is approached from
the left and then increases to the right; whereas the phase ofΦ is on average increasing. This
is easily verified numerically, and in many cases one or two terms are sufficient to provide an
accurate solution.

What is the significance of successive approximations to this field in the ray-theoretic
limit? The first iteration contains ray paths which, before leaving the surface, may have in-
teracted with the surface arbitrarily many times but only ina forward direction. The second
includes most paths which have changed direction twice: once via the operatorR and again
via L−1; and so on. The first iteration therefore accounts for multiple scattering, but notre-
versible paths which can occur when incident and backscatter direction are opposite; these
paths occur in pairs of equal length and therefore add coherently, giving rise to a peak in
the backscattered direction (enhanced backscatter eg [12,13]) in strongly scattering regimes.
Such reversible paths show initially at the second approximation.

Having obtained this series, numerical treatment by surface discretization is straight-
forward.

NUMERICAL METHOD AND RESULTS

The immediate benefit of series (7) is computational: If the surface is represented using a
rectangular grid ofM by N points, withM transverse steps (y direction) andN in range (x),
then(L + R) becomes an(MN × MN) matrix, and exact inversion would takeO(M3N3)

operations. By contrast each term of eq. (7) involves inversion of anM ×M matrix at each of
N range steps, requiring justO(NM3) operations and far less memory. Assuming a fixed res-
olution per wavelength, this scales withλ4. There is an additional Green function evaluation
component, which also increases withλ4, and in practice this is the dominant computational
cost in this approach (typically more than 90% whenM ∼= N ).



We briefly sketch the numerical treatment: The notationL, R will be used now for
the matrices representing the discretized integral operators as no confusion arises, and we
will focus on solution of the first term of (7), i.e. inversionof L. We define discretized surface
coordinatesxn, ym (for convenience using fixed step-sizes∆x, ∆y in these directions), giving
rise to discretized surface valuesΦinc(xn, ym) = anm, Φ(xn, ym) = bnm . The resulting
matrixL has dimensionsMN×MN . This can be viewed as anN×N lower-triangular block
matrix whose entries areM × M matrices. Gaussian elimination can be used to invert this
system by back-substitution. This is anN -step ‘marching’ process, in which each diagonal
M × M block is inverted in turn; this yields the solution for the unknown surface field by
‘marching’ in the positivex direction. The details of the algorithm are analogous to those
described in [8].

Results: convergence and timings

In order to apply the approach to randomly rough surfaces (for example sea surfaces or ter-
rain), statistically stationary surfaces with Gaussian statistics (normally distributed heights)
are generated computationally with a given spatial autocorrelation function (a.c.f.)ρ(ξ, η) =<

s(x, y) s(x + ξ, y + η) > where angled brackets denote ensemble averages. In the numeri-
cal studies we included the strongly scattering regime of surfaces with correlation length and
r.m.s. height both comparable with a wavelength. The tests (apart from the parallel code) were
run on a Pentium 4 3.2GHz with 1GB memory, under Linux.

The solution using two terms was compared with full or ‘exact’ inversion of the bound-
ary integral, and the result is shown in Figure 1. Because of the high computational cost of
full inversion this comparison was carried out for a relatively small surface of12 × 12 wave-
lengths, using a grid of120 × 120 points. Here the r.m.s. height and correlation length are
approximately equal toλ.

The convergence is illustrated by comparison of field valuesalong the mid-line in the
x-direction, as can be seen in Figure 2 for the first 4 iterations. Here the field is incident at
an angle of 45o from grazing, and extremely good agreement is produced rapidly. Note that
the oscillatory behaviour at the left is captured at the 2nd but not the 1st iteration. It should
be noted, however, that convergence cannot be guaranteed for an arbirtrary surface with given
statistics; for electromagnetic waves the method [7] exhibited divergences apparently due to
resonant surface features.

Computation time:When the algorithm is applied to larger surfaces, the two main con-
tributions to computation time at each ofN range steps are are aN × N matrix inversion
and a set of Green’s function evaluations. The matrix inversion remains a small percentage of
the cost throughout, and overall computation time increases with the square of the number of
unknowns,M2N2.

Several strategies can be used to reduce Green’s function evaluation cost. The most
straighforward of these is as follows: A simple quadrature was initially used to carry out
integrations using all available surface points. As the spatial separation increases, however,
the integrand becomes increasingly smooth as a function of transverse coordinate. Thus the
simple quadrature used initially may be replaced by higher order schemes utilizing far fewer



Figure 1: Comparison of surface fields by (a) iterative solution (2 terms), and (b) full inversion
for surface with r.m.s. height and correlation length approximately equal toλ.
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Figure 2: Comparison between exact and successive terms of the left-right solution corre-
sponding to Fig. 1, along a line inx-direction, for grazing angle45o.



points and therefore fewer Green’s function evaluations, with little loss of accuracy. This does
not reduce theorderof dependence on the number of unknowns, but reduces the multiplier.
Even a trapezium rule, for example, operating on half the number of points reduced the com-
putation time by a factor of 3 and resulted in errors of well under 1%. We calculated surface
fields on a desktop computer for a surface of48λ × 48λ (230,000 unknowns) in around 10
minutes, and100λ × 100λ (106 unknowns) in 180 minutes. Another possibility is to use
fast multilevel multipole. This can reduce the time-dependence toO(NM log NM), but we
found this to have relatively high complexity and memory cost, and accuracy which is not
easily regulated.

Parallelisation:The algorithm is easily parallelised, and in particular thequadrature,
which takes up most of the computation time, can be shared among any numberNproc of
processors. This has been carried out using MPI on a Sunfire machine, and as expected the
computation speed increases linearly withNproc. Solution for around5×106 unknowns, on a
waveguide of 550λ in length and 80λ circumference, was obtained in 5.3 hours with standard
integration and under 2 hours using optimised integration,on 96 processors.

The method has also been applied to both exterior and interior scattering problems
in various geometries, for example by acoustically large waveguides. Most such geometries
involve even better-behaved integrals, and are therefore amenable to the above integration
optimisation.

SUMMARY

This paper describes the development and application of theleft-right splitting algorithm for
acoustic scattering by large scatterers. Results have beenvalidated by comparison with “ex-
act” numerical solutions, and by examining the convergenceof the series. Although the for-
mulation is especially suited to incident fields at low grazing angles, good convergence has
been obtained at angles close to normal incidence. Problemsinvolving up to106 unknowns
or more can be solved on a standard desktop computer, and muchlarger problems in a few
hours on a parallel machine. The computational cost scales with the square of the number
of unknowns, and although this can be improved by combining the approach with methods
such as fast multipole this has not been necessary as in this approach the multiplier is rela-
tively small. The terms in the series represent increasing orders of surface interaction, and can
provide insight into multiple scattering mechanisms.
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