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Abstract 
Wavelet processing offers great flexibility and is a well established technique for 
removing noise from signals. The usual discrimination between signal and noise 
consists of a thresholding and/or pruning of the coefficients in the transformed 
wavelet domain. In this work, decomposition level dependent thresholds have been 
used to denoise ultrasonic signals. Thresholds for each decomposition level are 
estimated from their wavelet coefficients utilizing Universal, Minimax and SURE 
threshold selection rules. Discrete wavelet transform (DWT) and translation-invariant 
wavelet transforms are applied. Two different undecimated wavelet transform (UWT) 
processors, which we have specifically developed for noise reduction purposes, have 
been used. The efficiency in noise reduction, for single echo detection, is evaluated 
by means of the signal-to-noise ratio (SNR) enhancement. Results of processing 
synthetic and experimental ultrasonic pulse-echo traces are shown.  
 

INTRODUCTION 

Different digital signal processing techniques have been used for denoising pulse-
echo traces in ultrasonic imaging / detection applications. A particular type of noise, 
which is usually called grain noise or structural noise, plays an important role in 
ultrasonic signal detection applications. This type of noise is originated from the 
addition of multiple ultrasonic echoes produced by randomly located scatters (grain 
boundaries) inside the inspected material. 

Ultrasonic grain noise has a frequency band very similar to that of the echoes 
issuing from the defects or discontinuities to be detected. Conventional time 
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averaging and/or band pass filtering techniques are not useful for grain noise 
reduction. Specific denoising methods have been proposed for processing these 
ultrasonic signals, based on either spatial diversity or frequency diversity. Special 
techniques developed for the reduction of structural noise include Split Spectrum 
Processing SSP [1-3], time–frequency analysis (mainly by means of the Wigner–Ville 
transform) [4], and wavelet transform denoising methods [5-9]. 

Wavelet processing, which offers great flexibility and potential capabilities for 
removing noise from signals, has been used during the last years for ultrasonic grain 
noise reduction. In this work, discrete wavelet transform (DWT) and translation-
invariant wavelet transforms are used for noise reduction of synthetic and 
experimental ultrasonic traces. The synthetic grain noise registers used in the work 
have been generated by using a frequency domain model which includes frequency 
dependent material attenuation and frequency dependent scattering [6]. Experimental 
NDT ultrasonic traces have been obtained from the inspection of a CFRP (carbon 
fiber reinforced plastic) composite block. The results of denoising one of these 
experimental NDT traces are also presented. 
 

WAVELET TRANSFORMS 

The continuous wavelet transform CWT of a signal x(t) is defined as [10]: 
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where ψ(.) is the mother wavelet and a, b, the dilatation and translation 
coefficients respectively. The reconstruction formula allows to recover the signal x(t) 
from the wavelet coefficients: 

∫ ∫
∞

∞−

∞

∞−






 −

= 2
1)(1)(

a
dbda

a
btψ

a
a,bCWT

C
 tx x
ψ

     (2)    

being           ∞<= ∫
∞

∞−
dω

ω
ω

Cψ

2)Ψ(
           (3)  

This transform is highly redundant, since it maps a one-dimensional signal into 
a two-dimensional representation. The discretization of the parameters a and b still 
allow the reconstruction and provides less redundant representations that can be 
implemented using fast digital filter bank algorithms. The discrete wavelet transform 
(DWT) obtained by the algorithm of Mallat [10] corresponds to the dyadic 
discretization: 
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This expression (4) shows an orthogonal, non-redundant transform. The 
Introduction of redundancy produces less efficient signal representations but it can be 
useful in some applications, for example in de-noising [11-13]. The undecimated 
wavelet transform (UWT) is a redundant wavelet obtained avoiding the coefficient 
decimation performed in the DWT. Two implementation methods are addressed in 
this paper. The first is the called the à trous algorithm [10] that is essentially the same 
algorithm as Mallat’s, but removing downsampling and upsampling in the filter 
responses instead. An alternative method to obtain these redundant coefficients 
consists of applying the Mallat algorithm to circularly-shifted versions of the input 
sequence. For the redundant wavelet representations, the inverse operator is not 
unique and this allows different approaches to reconstruction that can be useful for 
different purposes. From the point of view of the à trous algorithm, reconstruction 
can be achieved with the dual filter bank [10]. On the other hand, for the circular-
shifting implementation, an independent, orthogonal reconstruction can be done for 
each circular shift.  

In this work, the Discrete wavelet transform DWT and two UWT 
implementation schemes, à trous (UWT1) and circular-shifting (UWT2), have been 
applied to the problem of ultrasonic grain noise reduction by wavelet thresholding. 

  

PROCESSING ULTRASONIC TRACES 

Processing ultrasonic traces in the transformed wavelet domain is originated from the 
idea that only a few (high value) wavelet coefficients contribute to the signal while 
most of the (low value) coefficients correspond to the noise. The discrimination 
between the signal and noise coefficients usually consists of a thresholding and/or 
pruning of the wavelet domain coefficients. Therefore, in its simplest version, wavelet 
denoising procedures can be summarized as (i) wavelet transform of the noisy 
register; (ii) pruning and/or thresholding of the coefficients in the transformed 
domain; (iii) reconstruction of the denoised signal by the inverse transform.  

The more significant processing parameters conditioning the overall denoising 
performance of a wavelet signal processor can be summarized as follows: a) Type of 
wavelet transform; b) Type of mother wavelet; c) Highest decomposition level; d) 
Type of border treatment; e) Threshold selection; f) Type of thresholding and/or 
pruning of the coefficients in the transformed domain.  

We present, in this work, the results of a study in which several parameters have 
been fixed, varying only the type of wavelet transform (DWT, UWT), and the 
threshold selection rule (Universal, Minimax and SURE [14-16]). The following 
parameters have been fixed: Mother wavelet: db6 [17]; Highest decomposition level: 
7; Border treatment: zero padding; No pruning; Soft thresholding [14-16]; Multilevel 
threshold selection [18]. The efficiency in noise reduction is evaluated by means of 
the signal-to-noise ratio SNR of the input and processed ultrasonic traces. 

Synthetic noise registers are frequently used for the evaluation of signal 
processing algorithms. In this paper we use a previously developed structural noise 
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model [6]. In this model, single scattering, frequency dependent material attenuation, 
frequency dependent scattering, and a Gaussian distribution of the scatters are 
assumed. The flaw echo is modelled as a reflection arriving at a fixed time, by means 
of the delayed delta function. The amplitude is fixed by means of a weighting factor 
in order to control the input SNR.  

In this study, the SNR of the initial and processed traces is calculated by means 
of the following expression: 
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where tsi are the amplitudes of the trace points located in a time window around the 
zone were the signal was incrusted (target zone, with Nts points), and tni are the 
amplitudes of the points in the rest of the trace (Ntn points). The time window is 
centred with the incrusted signal and has the same length. These quantities can be 
computed for the raw input traces (SNRin) and for the processed traces (SNRout), 
since we are using synthetic noise registers, and therefore we know the location and 
length of the incrusted echo-signal. 
 

RESULTS 

There are several parameters which can be adjusted in the grain noise generator. In 
this work we have used the following values: number of points in the trace: 4096; 
attenuation α0 = 1.8 10-26 ; instrumental white Gaussian noise N(0,1) with normalized 
amplitude; sampling frequency = 64 MHz; number of noise registers: 500. 

Several sets of 500 synthetic traces have been generated by adding a clean 
echographic signal in the central position of the noise registers. The amplitude, A , of 
the inserted signal is determined by means of a factor tAF σ= , where σt is an 
estimation of the standard deviation of the trace. Thus the initial SNR is varied by 
means of the factor F. In this work we use F = 2, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, and 5.  

Figure 1.a shows, as an example, one of the 500 synthetic ultrasonic traces 
generated with amplitude determined by F=2.75. The results after the denoising 
procedure, using SURE threshold selection rule, are shown in figure 1.b, 1.c and 1.d 
for the DWT, UWT1 and UWT2 processors respectively. The initial SNRin of the 
trace is 3.70 dB, and the final SNRout are 7.28, 9.91 and 10.00 dB for DWT, UWT1 
and UWT2, respectively. 

Several ultrasonic traces were acquired from a CFRP (carbon fibre reinforced 
plastic) composite block, 31.5 mm thickness, in which flat-bottom holes FBH were 
machined. They were acquired by a digital oscilloscope Tektronix TDS 744 (2GS/s of 
maximum sampling rate), with data length of 5000 samples, and were transferred via 
GPIB to a computer for further processing.  Figure 2 shows the results of processing 
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Figure 2. Experimental ultrasonic trace, before and after denoising with UWT2
processor and minimax threshold selection rule. 
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Figure 1. Synthetic ultrasonic trace with factor F = 2.75 a), and results after 
denoising with b) DWT c) UWT1 and d) UWT2 processors, using SURE as 
threshold selection rule. 
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Figure 3. Signal-to-noise ratio of the initial and processed ultrasonic traces, using 
DWT, UWT1 and UWT2 processors, with a) universal, b) SURE and c) minimax 
threshold selection rules, as a function of the factor F related to the initial SNR. 
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an experimental trace by using Cycle-spinning and minimax threshold selection rule. 
The initial SNRin of this trace is 4.49 dB, and the final SNRout 6.20 dB. 

An analysis of the SNR improvement has been performed from the results 
obtained by denoising the  9 sets of 500 synthetic ultrasonic traces. Each set of 500 
traces was processed using the fixed  parameters  described  previously  and  applying 
DWT, UWT1 and UWT2 wavelet transforms. For each wavelet transform, the 
denoising procedure was applied using a) universal; b) minimax and c) SURE 
threshold selection rules. The mean value in dB of each set of 500 traces (initial and 
denoised) was computed. 

Figure 3 shows the mean value of the signal-to-noise ratio of the processed 
ultrasonic traces, SNRout, as a function of the factor F (that controls the initial SNRin). 
The initial values SNRin of the synthetic traces are also plotted. Figure 3.a shows the 
results for the universal threshold selection rule, and figures 3.b and 3.c show the 
corresponding results for SURE and minimax thresholds. A better performance of the 
shift invariant wavelet processing can be observed. 
 

SUMMARY 

Several processing parameters condition the overall de-noising performance of a 
wavelet signal processor (type of wavelet transform, type of mother wavelet, highest 
decomposition level, type of border treatment, threshold selection, thresholding 
and/or pruning procedures). Redundant wavelets can provide great improvements for 
ultrasonic grain noise reduction but with an increase in the computational cost [9]. To 
take advantage of all the benefits of wavelet denoising additional work is needed 
looking for systematically analyse the separated effects of the different parameters 
and the global interactions among them. 
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