
A semi-analytical solution for viscothermal wave propagation in
narrow gaps with arbitrary boundary conditions.

Ysbrand Wijnant, Ruud Spiering, Maarten van Blijderveen and Andre de Boer

Department of Engineering Technology, University of Twente
P.O. Box 217, 7500 AE Enschede, the Netherlands

y.h.wijnant@ctw.utwente.nl

Abstract
Previous research has shown that viscothermal wave propagation in narrow gaps can effi-
ciently be described by means of the low reduced frequency model. For simple geometries
and boundary conditions, analytical solutions are available. For example, Beltman [4] gives
the acoustic pressure in the gap between an oscillating, rigid, rectangular plate and a rigid
surface. Assuming a pressure release boundary condition at the circumference of the plate,
excellent agreement with experiments was obtained. In many engineering applications how-
ever, the boundary conditions may vary along the circumference of the plate. For instance, the
vibrating membranes in hearing aid receivers are attached to complex structures and a simple
pressure release (p = 0) or zero velocity boundary condition (dp/dn = 0) is only valid at
some parts of the circumference of the vibrating structure. One can use numerical methods,
like FEM or BEM, but often a large number of degrees of freedom is needed to obtain ac-
curate results. Furthermore, a thorough understanding of the various phenomena can only be
gained through a large number of calculations. In this paper a semi-analytical solution is pre-
sented for the viscothermal wave propagation in the gap between an oscillating, rigid, circular
plate and a rigid surface for the arbitrary boundary conditions just mentioned. The pressure
in the gap is written as a series expansion of solutions satisfying the differential equations in
the interior domain. Subsequently, either the pressure release or the zero velocity boundary
condition is imposed on different parts of the circumference. The unknown constants in the
series expansion are determined using a weak form of the boundary conditions. It is shown
that only a limited number of terms is needed to accurately describe the total acoustic force
on the plate. The solution is validated by means of a finite element calculation.

INTRODUCTION

The description of visco-thermal wave propagation in narrow gaps has been described exten-
sively in literature. An overview is given in [2]. A proper description of the phenomenon in the
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gap is important for understanding the dynamical behavior of, e.g., the stacked solar panels
of a satellite during launch or to increase the performance of hearing aid receivers. Beltman
showed that from all the models available the low reduced frequency model is the most effi-
cient model. Also the acousto-elastic coupling between flexible plates and a narrow air-layer
is now well established [1]. For various simple geometries and simple boundary conditions,
one can obtain an analytical solution of the low reduced frequency model. If the geometry of
the air layer becomes more complex, a finite element model is the most efficient tool. In [2] it
was shown that the agreement between the finite element result, as implemented in the finite
element package B2000, and experimental data is good.

However, if the geometry is simple but the boundary conditions are complex, the use of
the analytical solutions, as we describe in this paper, may be preferred. Obviously, the analyt-
ical solutions give more insight but they also reduce the number of degrees of freedom. This
allows the model to be used more efficiently in complex models, where the wave propagation
in the air layer is only a sub-problem.

In the finite element method, the differential equations are weighted and the solution
only satisfies the differential equation and (some) boundary conditions in a weak form. Our
suggested approach is to use the analytical solution, i.e. the differential equation is met ana-
lytically in the interior domain, and weight the boundary conditions instead.

The proposed method is used to describe the wave propagation in the gap between
an oscillating circular plate and a fixed surface. We will briefly describe the low reduced
frequency model and the analytical solution for the pressure in the gap. Next, a Dirichlet
boundary condition is imposed on part of the circumference, while on the remaining part
a Neumann condition is imposed. The weak form of the boundary conditions is described.
The convergence of the solution to the boundary conditions is investigated and solutions are
presented for various values of the dimensionless parameters involved. Finally, the method is
validated by means of a finite element analysis.

THEORY

Consider a rigid, circular plate of radiusR oscillating near a fixed surface, see figure(1). The
gap between plate and surface ish̄(t) = h0(1+heiωt), whereh0 denotes the mean gap height,
h is the dimensionless amplitude of the oscillation,ω is the angular frequency andt denotes
time. At the outer circumference of the plate (r̄ = R) the gap is either open (atθ ∈ ∂ΩD) or
closed (atθ ∈ ∂ΩN ).

Low reduced frequency model

The low reduced frequency model is used to describe the viscothermal wave propagation in
the gap, see e.g. [2]. The model is based on the linearized Navier Stokes equations, the equa-
tion of continuity, the equation of state for an ideal gas and the energy equation. It assumes
no internal heat generation, a homogeneous medium, laminar flow and only small harmonic
perturbations. In addition the acoustic wavelengthλ is assumed to be large compared to the
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Figure 1:Circular plate oscillating near a fixed surface (front and top view).

mean gap heighth0 and large compared to the viscous boundary layer thickness. For circular
coordinates, the low reduced frequency model, in terms of dimensionless variables, reads:
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whereu, v andw denote the velocity perturbation in, respectively, ther−, θ− andz-direction,
p is the pressure perturbation,T the temperature perturbation andρ the density perturbation.
The dimensionless variables (u, v, w, . . .) are related to the physical variables (ū, v̄, w̄, . . .)
according to:̄u = uc0e

iωt, v̄ = vc0e
iωt, w̄ = wc0e

iωt, p̄ = p0(1+peiωt), T̄ = T0(1+Teiωt),
ρ̄ = ρ0(1 + ρeiωt), z̄ = zh0 andr̄ = rc0/ω, wherec0, p0, T0 andρ0 denote, respectively, the
ambient speed of sound, mean pressure, mean temperature and mean density.

The parametersγ = Cp/Cv (Cp is the specific heat at constant pressure,Cv at constant
volume) andσ =

√
µCp/λT (µ denotes viscosity,λT thermal conductivity), only depend on

the physical properties of the fluid. The parameters determining the solution of the problem
are the shear wave numbers = h0

√
ρ0ω/µ, which is a measure for the ratio between the

inertial and viscous effects, and the dimensionless radius∆ = Rω/c0 = 2πR/λ, which
equals the ratio between the circumference of the plate and the acoustic wavelengthλ =
2πc0/ω. The low reduced frequency assumption implies thatk = ωh0/c0, which is a measure
for the ratio between the gap height and the acoustic wavelength, is very small.

Based on equations1 until 6, one can derive the following differential equation for the
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pressurep = p(r, θ), see [2]:
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The general solution of equation7 can be shown to be:

p(r, θ) = C0I0(Γr) +
∞∑

m=1

(Cs,m sin(mθ) + Cc,m cos(mθ)) Im(Γr)− h n, (8)

wereIm is the modified Bessel function of the first kind of order m andC0, Cs,m andCc,m

are constants. Note that the modified Bessel function of the second kindKm, which is also a
solution, is discarded as it becomes infinite atr = 0.

Boundary conditions

The pressure in the gap is generally much larger than the pressure outside the gap. There-
fore at∂ΩD, i.e. where the circumference is open, a pressure release boundary condition,
p(∆, θ) = 0, is a realistic assumption (Dirichlet). If the barriers are close enough to the oscil-
lating plate, no leakage is possible and the radial velocity perturbation can be set to zero. As
the velocity is proportional to the derivative of the pressure, we can set∂p(∆, θ)/∂r = 0 at
∂ΩN (Neumann).

When the boundary conditions are independent ofθ, i.e. ∂Ω = ∂ΩD or ∂Ω = ∂ΩN ,
only C0 6= 0 and the solution is readily obtained. If the boundary∂Ω contains both domains
∂ΩD and∂ΩN , C0, Cs,m andCc,m can not be determined in closed form but can from a weak
form of the boundary conditions. For that, the series expansion8 is truncated tom = M

and evaluated atr = ∆ in ∂ΩD, while in ∂ΩN the derivative of the series is evaluated.
The results are multiplied by a weight functionwn(θ) and integrated along∂Ω. In general,
the integral should be set equal to the integral along∂Ω of the product of the appropriate
boundary conditions and weight functionwn(θ), which, in the present case, is identical to
zero. The constantsC0, Cs,m andCc,m can now be determined from a system of equations
using a set of weight functionswn(θ). In the present studysin(nθ) andcos(nθ) have been
used forwn(θ) and the following system of equations is obtained:
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where we have chosenN = M .
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The integrals can be evaluated numerically but straightforward implementation yields
high condition numbers for the system matrix whenM is large (Im(Γ∆) becomes very small
for largem). To a large extent, this can be solved by scalingIm(Γr) by Im(Γ∆) and solving
for C0I0(Γ∆), Cs,mIm(Γ∆) andCc,mIm(Γ∆), ensuring that the entries in the system matrix
are of the same order.

RESULTS

As an example, we consider a geometry for which∂ΩN = θ ∈ ([0, π/2> ∪ [5π/6, 7π/6>

∪ [3π/2, 7π/4>) and∂ΩD = θ ∈ ([π/2, 5π/6> ∪ [7π/6, 3π/2> ∪ [7π/4, 2π>). This
geometry is shown in figure1 and chosen because of its lack of symmetry. The dimensionless
amplitude of the oscillation of the plateh was set to 1.
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Figure 2:Pressure amplitude|p(x, y)| (a), |p(∆, θ)| as a function ofθ (b) and pressure deriv-
ative|∂p(∆, θ)/∂r| as a function ofθ (c). s = 5 and∆ = 5. M = 128.

In figure 2, the pressure|p(x, y)|, |p(∆, θ)| and the partial derivative of the pressure
|∂p(∆, θ)/∂r| are shown fors = 5 and∆ = 5. As can be seen, the series closely matches the
Dirichlet conditionp(∆, θ) = 0 in ∂ΩD and Neumann condition∂p(∆, θ)/∂r = 0 in ∂ΩN .
Near the points where the boundary domains connect, (i.e. where∂ΩD connects to∂ΩN )
the pressure rises quickly inΩN and the partial derivative∂p(∆, θ)/∂θ becomes singular in
∂ΩD. Due to the sudden change in boundary conditions, the radial velocity is infinite at that
singular point and this results in oscillatory components in the solution. These oscillations
can be removed using Lanczos sigma factors [5].

To study the convergence of the solution to the boundary conditions, the pressure and
pressure derivative are shown in figure3 for various values ofM . One may conclude that only
a limited number of terms is needed to have good agreement with the boundary conditions.

The model described here can be used in a model which also describes the dynamics of
the plate, i.e. in a model whereh follows from an equation of motion of the plate. Therefore,
we are especially interested in the number of terms required to have an accurate representation
of the total force acting on the plate. Based on the series expansion8, the only terms which
contribute to the (dimensionless) forceF , defined asF =

∫ ∆
0

∫ 2π
0 p(r, θ)rdθdr, are theI0-
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Figure 3: Pressure amplitude|p(∆, θ)| (a) and pressure derivative|∂p/∂r(∆, θ)| as a func-
tion ofθ (b) for various values ofM (s = 5 and∆ = 5).

M 1 2 3 4 8
F -99.8 - 26.9 i -98.9 - 27.3 i -90.8 - 26.1i -90.2 - 25.2 i -90.3 -24.7 i

M 16 32 64 128
F -90.0 - 25.1 i -89.9 - 25.4 i -89.8 - 25.7 i -89.7 - 25.9 i

Table 1:Dimensionless forceF for various values ofM .

term (C0) andhn-term. Note that, unlike a Fourier series,C0 does vary as the number of
terms in the series is increased. Hence the convergence of the total force is determined by the
convergence ofC0. In table1, the total forceF is given for various values ofM . Surprisingly,
one can see that only7 terms (M = 3) suffice to be within2% of the solution (based upon
the solution forM = 128). However, the total force converges only slowly asM is further
increased. This is attributed to the discontinuity at the points connecting the boundary domains
∂ΩD and∂ΩN .

Solutions

The pressure amplitude|p(x, y)| for various values of the shear wave numbers and the di-
mensionless radius∆ are shown in figure4.

The effect of the dimensionless radius∆ can be explained as follows. When∆ is
small, the circumference (and thus the radius) of the plate is small compared to the acoustic
wavelength. Then the pressure distribution is affected by the boundary conditions but remains
very smooth. If∆ is increased and becomes comparable to the circumference of the plate, one
observes resonant-like behavior, similar to the acoustic resonances observed in enclosures.
The exact resonances (frequencies and mode shapes) depend heavily on the distribution of
the barriers along the circumference. Note that∆ is a function of the frequency and∆ may
thus also be referred to as a reduced frequency (not to be confused with the reduced frequency
k). Then certain specific values of∆ can be associated with resonance (eigen-)frequencies. If
∆ is further increased the circumference of the plate is much larger than the wavelength and
the pressure distribution is highly oscillatory.

Also the dependency of the the shear wave numbers is clear from the figure. Whens



ICSV13, July 2-6, 2006, Vienna, Austria

(a) s = 2, ∆ = 1 (b) s = 2, ∆ = 5 (c) s = 2, ∆ = 10

(d) s = 5, ∆ = 1 (e) s = 5, ∆ = 5 (f) s = 5, ∆ = 10

(g) s = 20, ∆ = 1 (h) s = 20, ∆ = 5 (i) s = 20, ∆ = 10

Figure 4: Pressure amplitude|p(x, y)| for various values of the shear wave numbers and
dimensionless radius∆.

is small, the thermal- and viscous effects are large. Then the plate squeezes fluid/air in and
out of the openings, similar to a viscous pump, and the associated pressure is shown in figure
4(i). In this case, the boundary conditions affect the solution only close to the boundary. For
high values ofs the fluid behaves non-viscous and boundary conditions affect the solution in
the entire domain.

Validation using FEM

The results shown in the previous sections have been validated using a finite element imple-
mentation of the low reduced frequency model for the given geometry. Figure5 shows the
absolute value of the pressure|p(x, y)| for s = 5 and various values of∆. The results have
been obtained using 436 degrees of freedom.

If figure 5 is compared to figure4, one can conclude that the semi-analytical method,
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Figure 5:FEM results for the pressure|p(x, y)| for ∆ = 1 (a), 5 (b) and10 (c).

as proposed, is validated. In addition, one may conclude that the semi-analytical solution
provides more detail with less degrees of freedom.

CONCLUSIONS

In this paper, a semi-analytical approach for the description of wave propagation in narrow
gaps with arbitrary boundary conditions is presented. The method uses the analytical solutions
for the pressure in the gap (in terms of a series expansion). The constants in the series expan-
sion are determined by imposing boundary conditions in a weak form. This method can be
used when the geometry of the gap is simple but arbitrary boundary conditions apply. Then,
it can be used as a fast alternative compared to a finite element approach.
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