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Abstract

Previous research has shown that viscothermal wave propagation in narrow gaps can effi-
ciently be described by means of the low reduced frequency model. For simple geometries
and boundary conditions, analytical solutions are available. For example, Belinginds

the acoustic pressure in the gap between an oscillating, rigid, rectangular plate and a rigid
surface. Assuming a pressure release boundary condition at the circumference of the plate,
excellent agreement with experiments was obtained. In many engineering applications how-
ever, the boundary conditions may vary along the circumference of the plate. For instance, the
vibrating membranes in hearing aid receivers are attached to complex structures and a simple
pressure release (= 0) or zero velocity boundary conditiorl/dn = 0) is only valid at

some parts of the circumference of the vibrating structure. One can use numerical methods,
like FEM or BEM, but often a large number of degrees of freedom is needed to obtain ac-
curate results. Furthermore, a thorough understanding of the various phenomena can only be
gained through a large number of calculations. In this paper a semi-analytical solution is pre-
sented for the viscothermal wave propagation in the gap between an oscillating, rigid, circular
plate and a rigid surface for the arbitrary boundary conditions just mentioned. The pressure
in the gap is written as a series expansion of solutions satisfying the differential equations in
the interior domain. Subsequently, either the pressure release or the zero velocity boundary
condition is imposed on different parts of the circumference. The unknown constants in the
series expansion are determined using a weak form of the boundary conditions. It is shown
that only a limited number of terms is needed to accurately describe the total acoustic force
on the plate. The solution is validated by means of a finite element calculation.

INTRODUCTION

The description of visco-thermal wave propagation in narrow gaps has been described exten-
sively in literature. An overview is given ir2]. A proper description of the phenomenon in the
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gap is important for understanding the dynamical behavior of, e.g., the stacked solar panels
of a satellite during launch or to increase the performance of hearing aid receivers. Beltman
showed that from all the models available the low reduced frequency model is the most effi-
cient model. Also the acousto-elastic coupling between flexible plates and a narrow air-layer
is now well establishedl]. For various simple geometries and simple boundary conditions,
one can obtain an analytical solution of the low reduced frequency model. If the geometry of
the air layer becomes more complex, a finite element model is the most efficient tdlitin [

was shown that the agreement between the finite element result, as implemented in the finite
element package B2000, and experimental data is good.

However, if the geometry is simple but the boundary conditions are complex, the use of
the analytical solutions, as we describe in this paper, may be preferred. Obviously, the analyt-
ical solutions give more insight but they also reduce the number of degrees of freedom. This
allows the model to be used more efficiently in complex models, where the wave propagation
in the air layer is only a sub-problem.

In the finite element method, the differential equations are weighted and the solution
only satisfies the differential equation and (some) boundary conditions in a weak form. Our
suggested approach is to use the analytical solution, i.e. the differential equation is met ana-
Iytically in the interior domain, and weight the boundary conditions instead.

The proposed method is used to describe the wave propagation in the gap between
an oscillating circular plate and a fixed surface. We will briefly describe the low reduced
frequency model and the analytical solution for the pressure in the gap. Next, a Dirichlet
boundary condition is imposed on part of the circumference, while on the remaining part
a Neumann condition is imposed. The weak form of the boundary conditions is described.
The convergence of the solution to the boundary conditions is investigated and solutions are
presented for various values of the dimensionless parameters involved. Finally, the method is
validated by means of a finite element analysis.

THEORY

Consider a rigid, circular plate of radidgoscillating near a fixed surface, see figure(1). The
gap between plate and surfacé(g) = ho(1+he?), whereh, denotes the mean gap height,
h is the dimensionless amplitude of the oscillatienis the angular frequency artdlenotes
time. At the outer circumference of the plate=£ R) the gap is either open (te 9)p) or
closed (a¥ € 0Qy).

Low reduced frequency model

The low reduced frequency model is used to describe the viscothermal wave propagation in
the gap, see e.@2]. The model is based on the linearized Navier Stokes equations, the equa-

tion of continuity, the equation of state for an ideal gas and the energy equation. It assumes
no internal heat generation, a homogeneous medium, laminar flow and only small harmonic
perturbations. In addition the acoustic wavelengtis assumed to be large compared to the
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Figure 1: Circular plate oscillating near a fixed surface (front and top view).

mean gap heightiy and large compared to the viscous boundary layer thickness. For circular
coordinates, the low reduced frequency model, in terms of dimensionless variables, reads:

2
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whereu, v andw denote the velocity perturbation in, respectively,the 6 — andz-direction,

p is the pressure perturbatidfi,the temperature perturbation anghe density perturbation.
The dimensionless variables, , w, ...) are related to the physical variables ¢, w, .. .)
according toz = ucoe™?, v = vege™!, w = wepe™t, p = po(1+pet), T = To(1+Te™?),

p = po(1+ pet), z = zhg and7 = rcy/w, wherecy, po, Ty andpg denote, respectively, the
ambient speed of sound, mean pressure, mean temperature and mean density.

The parameters = C,,/C,, (C,, is the specific heat at constant pressuareat constant
volume) andr = /uC,/Ar (1 denotes viscosity\r thermal conductivity), only depend on
the physical properties of the fluid. The parameters determining the solution of the problem
are the shear wave number= hy/pow/p, Which is a measure for the ratio between the
inertial and viscous effects, and the dimensionless radius Rw/co = 2w R/, which
equals the ratio between the circumference of the plate and the acoustic waveleagth
27y /w. The low reduced frequency assumption implies that whg /g, which is a measure
for the ratio between the gap height and the acoustic wavelength, is very small.

Based on equatiorsuntil 6, one can derive the following differential equation for the
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pressure = p(r,0), see B

10 Op 1 0%p 9
rm(rm>+ﬂam‘Fp—0- 0

wherel’ = /v/(nB(s)) denotes the propagation constant and (1+ B(so)(y—1)/v)~!
is the polytropic constant{(¢) = (2/(¢V4)) (((cosh(¢Vi) — 1) /sinh((VE)) — 1).

The general solution of equatigican be shown to be:
p(r,0) = Colo(I'r) + Z Cs,m sin(m@) + Cep, cos(mB)) Iy, (I'r) — h n, (8)
m=1

were I, is the modified Bessel function of the first kind of order m and C; ,,, andC, ,,
are constants. Note that the modified Bessel function of the secondskindvhich is also a
solution, is discarded as it becomes infinite at 0.

Boundary conditions

The pressure in the gap is generally much larger than the pressure outside the gap. There-
fore atd€lp, i.e. where the circumference is open, a pressure release boundary condition,
p(A, 0) =0, is a realistic assumption (Dirichlet). If the barriers are close enough to the oscil-
lating plate, no leakage is possible and the radial velocity perturbation can be set to zero. As
the velocity is proportional to the derivative of the pressure, we cafiygeX, ) /0r = 0 at
dQx (Neumann).

When the boundary conditions are independert#t,dfe. 92 = 9Qp or 992 = 0y,
only Cy # 0 and the solution is readily obtained. If the boundéafy contains both domains
0Q1p andoQy, Cy, Cs 1 andC, ,, can not be determined in closed form but can from a weak
form of the boundary conditions. For that, the series exparBi@ntruncated tan = M
and evaluated at = A in 9Qp, while in 90y the derivative of the series is evaluated.
The results are multiplied by a weight functian,(f) and integrated along<. In general,
the integral should be set equal to the integral aléfigof the product of the appropriate
boundary conditions and weight functia, (#), which, in the present case, is identical to
zero. The constantSy, Cs ,, andC,,, can now be determined from a system of equations
using a set of weight functions,,(#). In the present studyin(nf) andcos(nf) have been
used forw, (#) and the following system of equations is obtained:

/ (A, 6)d0 + / WE0) 4y ©)

2 oay  Or

/ sin(nf)p(A, 0)do + / sin(nQ)MdQ =0 n=1...N (10)
990 pore or

/ cos(nf)p(A, 0)do + / cos(nf) (A, 6) dd=0 n=1...N. (11)
o0p 20y or

where we have chosel = M.
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The integrals can be evaluated numerically but straightforward implementation yields
high condition numbers for the system matrix whenis large (,,(I"'A) becomes very small
for largem). To a large extent, this can be solved by scalipgI'r) by I,,,(I'A) and solving
for Colo(I'A), CsmIm(I'A) andC; I, (I'A), ensuring that the entries in the system matrix
are of the same order.

RESULTS

As an example, we consider a geometry for whihy = 6 € ([0,7/2> U [57/6, 77 /6>

U [37/2,7r/4>) and0Qp = 0 € ([x/2,5m/6> U [Tn/6,37/2> U [Tr/4,2n>). This
geometry is shown in figureand chosen because of its lack of symmetry. The dimensionless
amplitude of the oscillation of the platewas set to 1.

T
— M=128

@) (b) O]

Figure 2: Pressure amplitude(x, y)| (a), |[p(A, #)| as a function ob (b) and pressure deriv-
ative|0p(A, 6)/0r| as a function ot/ (c). s = 5andA = 5. M = 128.

In figure 2, the pressurép(z,v)|, |p(A, )| and the partial derivative of the pressure
|Op(A, 0)/0r| are shown fos = 5 andA = 5. As can be seen, the series closely matches the
Dirichlet conditionp(A, 8) = 0 in 92p and Neumann conditiofip(A, 0)/0r = 0 in 0Qy.

Near the points where the boundary domains connect, (i.e. wiefeconnects t@y)

the pressure rises quickly iRy and the partial derivativep(A, ) /06 becomes singular in
0Q p. Due to the sudden change in boundary conditions, the radial velocity is infinite at that
singular point and this results in oscillatory components in the solution. These oscillations
can be removed using Lanczos sigma factb}s [

To study the convergence of the solution to the boundary conditions, the pressure and
pressure derivative are shown in fig@for various values ofi/. One may conclude that only
a limited number of terms is needed to have good agreement with the boundary conditions.
The model described here can be used in a model which also describes the dynamics of
the plate, i.e. in a model whetefollows from an equation of motion of the plate. Therefore,
we are especially interested in the number of terms required to have an accurate representation
of the total force acting on the plate. Based on the series expaBsiba only terms which
contribute to the (dimensionless) forég defined ad’ = fOA Oz”p(r, 0)rdodr, are thely-



Y.H. Wijnant et al.

— M-8
M=16
M=32

(@) (b)

Figure 3: Pressure amplitudé (A, 0)| (a) and pressure derivativép/0r(A, )| as a func-
tion of # (b) for various values oM (s = 5 and A = 5).

M 1 2 3 4 8

F | -99.8-26.9i| -98.9-27.3i| -90.8-26.1i| -90.2-25.2i| -90.3-24.7 i
M 16 32 64 128

F | -90.0-25.1i| -89.9-25.4i| -89.8-25.71i| -89.7-25.91

Table 1:Dimensionless forcé’ for various values ofl/.

term (Cy) and h n-term. Note that, unlike a Fourier serigs, does vary as the number of
terms in the series is increased. Hence the convergence of the total force is determined by the
convergence aofy. In tablel, the total forceF’ is given for various values af/. Surprisingly,

one can see that onlyyterms (/ = 3) suffice to be withir2% of the solution (based upon

the solution forM = 128). However, the total force converges only slowly&sis further
increased. This is attributed to the discontinuity at the points connecting the boundary domains
0Qp andoy.

Solutions

The pressure amplitude(z, y)| for various values of the shear wave numbend the di-
mensionless radiu& are shown in figurd.

The effect of the dimensionless radids can be explained as follows. Whehk is
small, the circumference (and thus the radius) of the plate is small compared to the acoustic
wavelength. Then the pressure distribution is affected by the boundary conditions but remains
very smooth. IfA is increased and becomes comparable to the circumference of the plate, one
observes resonant-like behavior, similar to the acoustic resonances observed in enclosures.
The exact resonances (frequencies and mode shapes) depend heavily on the distribution of
the barriers along the circumference. Note thais a function of the frequency andl may
thus also be referred to as a reduced frequency (not to be confused with the reduced frequency
k). Then certain specific values Af can be associated with resonance (eigen-)frequencies. If
A is further increased the circumference of the plate is much larger than the wavelength and
the pressure distribution is highly oscillatory.

Also the dependency of the the shear wave numberclear from the figure. When
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Figure 4: Pressure amplitudép(z, y)| for various values of the shear wave numbeand
dimensionless radiuA.

is small, the thermal- and viscous effects are large. Then the plate squeezes fluid/air in and
out of the openings, similar to a viscous pump, and the associated pressure is shown in figure
4(i). In this case, the boundary conditions affect the solution only close to the boundary. For
high values ofs the fluid behaves non-viscous and boundary conditions affect the solution in
the entire domain.

Validation using FEM

The results shown in the previous sections have been validated using a finite element imple-
mentation of the low reduced frequency model for the given geometry. Figshews the
absolute value of the pressuggx, y)| for s = 5 and various values ah. The results have
been obtained using 436 degrees of freedom.

If figure 5 is compared to figurd, one can conclude that the semi-analytical method,
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Figure 5: FEM results for the pressuie(z, y)| for A =1 (a), 5 (b) and10 (c).

as proposed, is validated. In addition, one may conclude that the semi-analytical solution
provides more detail with less degrees of freedom.

CONCLUSIONS

In this paper, a semi-analytical approach for the description of wave propagation in narrow
gaps with arbitrary boundary conditions is presented. The method uses the analytical solutions
for the pressure in the gap (in terms of a series expansion). The constants in the series expan-
sion are determined by imposing boundary conditions in a weak form. This method can be
used when the geometry of the gap is simple but arbitrary boundary conditions apply. Then,
it can be used as a fast alternative compared to a finite element approach.
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