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Abstract 
Tactile interactions with thin plates generate modal propagation of elastic waves that, in the 
frequency range of interest (0-10 kHz), is made of only the two lowest-order modes (flexural 
and longitudinal). Using sensors that acquire just vertical displacements, the flexural mode is, 
in fact, the only one that is recorded. In order to localize the interaction from the acquired 
signals using such sensors, we consider two classes of solutions: TDOA (Time Delay Of 
Arrival) and CC (localisation by Cross-Correlation). In both cases a method that predicts the 
response of the board to a tactile excitation would be extremely useful, as it would enable 
TDOA to greatly improve its accuracy; in addition, it would greatly simplify the learning 
phase of CC techniques. With these goals in mind, we developed two methods for predicting 
the board response. The former computes the exact flexural modal solution by setting free 
boundary conditions only on the interaction surfaces while assuming the plate to be of infinite 
extension. The plate’s borders are then accounted for through ray tracing. The latter is based 
on the numerical solution of the elastic wave equation, which inherently takes into account 
the reflections at the plate’s border. We tested and compared the two methods on real data, 
which proved effective on a wide range of situations. The former turned out to excel with 
larger plates and in the presence of weak reverberations, while the second proved more 
accurate in complementary situations. As both methods need to know the excitation signal 
and the elastic parameters of the plate, we also developed a method for computing the 
excitation through wave dispersion compensation based on inverse propagation, and a 
method for estimating the elastic parameters from the acquired data. This latter solution was 
validated through measurements in the ultrasonic range. 
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INTRODUCTION 

Nicholson at al. [1] analyzed the elastic wave propagation in panels considering two 
different types of geometry: a semi-infinite solid half-space with the transducers on 
the free surface, and infinite solid plates, with different thicknesses and with the 
transducers on the upper free surface. In the semi-infinite solid half-space the 
situation is clear: we can recognize the longitudinal (P-wave) and shear (S-wave) 
wavefronts, the Rayleigh wave localized close to the surface and the lateral or head 
wave [2]. In the infinite solid plate with thicknesses of the same order of the 
wavelength the situation is much more complex, due to the presence of guided waves 
generated by the interaction of the different wavefronts with the surfaces of the plate. 
Finally for infinite solid plates with smaller thicknesses, only guided wave arrivals 
are visible. Tucker [3] showed that the previous behaviour can be found in panels 
made up of many materials, like Medium Density Fiberboard (MDF), plexiglass 
(PLX), aluminium, etc. The boards are “perceived” by the wave as homogeneous 
(through the thickness), orthotropic plates as long as the wavelength λ remains much 
larger than the panel thickness h. The “perception” of the material greatly reduces the 
complexity of the equations needed to describe the plate wave propagation (also 
commonly termed Lamb or guided wave propagation) [4]. 

There are two distinct types of plate waves: symmetric (s) and antisymmetric 
(a), each of which have an infinite number of modes (s0, s1, s2, …, sn and a0, a1, a2, 
…, an) at higher frequencies. The lowest modes are also called extensional (s0) and 
flexural (a0) Lamb modes. Plate waves are dispersive by nature, meaning that 
different frequencies travel at different speeds (phase velocities). The phase velocity 
vph is the fundamental characteristic of the Lamb wave and once it is known we can 
determinate the wave number and calculate the stresses and displacements at any 
point of the plate. 

Extensional and flexural modes should be distinguished in the same received 
signal but it can be proved that the extensional mode does not propagate below 
certain frequencies [3] and we therefore only consider the flexural mode in this paper. 

SOLUTION FOR WEAKLY REVERBERATING FLEXURAL PLATES 

In large plates (for example 1m square boards) or in small (for example 30cm square 
boards) weakly reverberating (made up of MDF, PLX, etc.) ones the exact flexural 
modal solution can be found by solving a characteristic equation after setting free 
boundary conditions on the interaction surfaces, while assuming the plate to be of 
infinite extension. The plate’s borders can then be accounted for through ray tracing. 

The Characteristic Equation 

If h = 2d is the thickness of the plate, kβ is the S-wave number, vα and vβ are the       
P-wave and S-wave velocities and va is the phase velocity of the antisymmetric Lamb 
waves, then the characteristic equation for the antisymmetric modes is: 



ICSV13, July 2-6, 2006, Vienna, Austria 

 ( )
( )

( ) 0
14

121
2222

22

22

2

=
−−

−
+

−

−

aaa

a

a

a

dtg

dtg

ζξζζ
ζ

ζξ

ζ  (1) 

where dkd β= , 
2
,

2
2
,

as
as v

vβζ =  and 
2

2
2

α

βξ
v
v

= .  

Many authors have performed calculations of the phase velocities and their 
dependence on the plate thickness and frequency (dispersion curves). To achieve this 
purpose the elastic properties of the medium (in our tests the bulk velocities vα and 
vβ) are necessary. In the next section we show how to estimate these properties and 
how to calculate the dispersion curves for the s0 and a0 modes. 

Estimation Of The Elastic Properties Of The Plate 

A transducer T converts electrical energy into mechanical energy, propagated through 
a thin panel in form of elastic waves. Two sensors Rx1 and Rx2, placed a known 
distance apart, can be used to receive the signals associated to these waves, to 
calculate their phase difference and thus to measure their phase velocity (Fig. 1). 
Then different phase velocity observations can be used to estimate the elastic 
properties (vα and vβ) of the panel by solving a bidimensional optimization problem. 
A more detailed description of this method is reported in the following. 

T Rx1 Rx2

panel panel 

2Rx1RxT

th

 
Figure 1 - Technique to calculate the dispersion curves of a thin panel. 

∆xx00x x∆

Estimation Of The Signature Of The Excitation Signal 

In this section we propose a simple scheme to estimate the finger touch signature. Let 
us consider a receiver Rx, located at the centre of the board, and the corresponding 
acquired signal s. This latter is thus not affected by problems of overlap between the 
direct arrival and the signals reflected from the borders of the panel (edge reflections). 
If the position of the touch (xT, yT) is known, the transmitted signature can be 
estimated by inverse propagating s of the exact distance between source and receiver. 
The inverse propagation is obtained by filtering and the filter is designed in the 
frequency domain by using the knowledge of the plate wave theory and of the 
estimated elastic properties of the panel. 

In an experiment on a MDF panel with the thickness of 5mm, the estimated 
signature of the finger touch, after inverse propagating the signal s, is shown in Fig. 2. 
It is impulsive with a time duration of about 6 ms. 

Validation Of The Method With The Observed Data 

The knowledge of the transmitted signal, of the plate elastic properties and of the 
wave propagation model allows the calculation of the direct arrival acquired by any 
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receiver (simulated or recalculated data): the transmitted signal can be forward 
propagated of the exact distance between source and receiver. 

Since we want to simulate the complete elastic wave propagation in the plate, 
in order to compare the observed response with the calculated one, we have to take 
into account the edge reflections. A fast beam tracer [5, 6] can be used to achieve this 
purpose. We can therefore compute the complete board response as the result of the 
sum of the signals due to the direct arrival and to the most energetic reflected rays. 

Let us consider an experiment on a MDF plate, whose configuration is shown 
in Fig. 3. We calculate the direct arrival, corresponding to the ray directly linking the 
source with the receiver (bold line) and the first four delayed arrivals, corresponding 
to the path of the rays reflected only once by the borders of the plate and linking the 
source with the receiver (solid lines). 
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Figure 2 – Estimated signature of the finger 

touch in a MDF plate. 
Figure 3 - Direct arrival and the first four 

reflected rays. 
 
First we compare the observations with the simulated data only considering the direct 
arrival (Fig. 4). There is a good agreement before the arrival of the reflected waves 
(about 6 ms). Then we add the information about the reflections and the more 
reflected rays we consider in the computation of the simulated signal response, the 
more the agreement between observations and calculated data is good. In Fig. 5 we 
compare the observed data with the calculated one, considering the direct arrival and 
the most energetic reflected rays. 
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Figure 4 - Comparison of the observations 

with the simulated data only considering the 
Figure 5 - Comparison of the observations 

with the simulated data considering the 
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direct arrival. direct arrival and four reflected rays. 

SOLUTION FOR REVERBERATING AND WEAKLY ATTENUATIVE 
FLEXURAL PLATES 

When dealing with metal plates of relatively small size, another solution has been 
developed, that takes into account diffraction by the borders of the plate. Except for 
plates with simply supported edges, no analytical solution for the free vibration of 
plates exist [7]. Therefore, the wave propagation equation is numerically solved, 
taking into account the boundary conditions. We present here the case of clamped 
boundaries, but the method could be extended to the case of free boundaries as well, 
on condition that one uses a more precise numerical scheme because of the end 
resonance of the plate. 

Propagation Equation Used 

A finger knock given at the surface of a plate gives birth to flexural waves in the 
audible range. In other words, the created wave is the first antisymmetric Lamb mode, 
noted a0. Actually, when the product frequency by plate thickness is small compared 
to one, the transverse displacement component w does not depend on the thickness 
coordinate any more, and the classical flexural plate theory is valid. According to it, 
w obeys the following equation [8]: 
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ν  the Poisson ratio, ρ  the density (kg/m3), and S(x,y,t) the source term. Now in an 
isotropic plate, it is easy to show that this equation is equivalent to: 
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with vP the plate velocity defined as 2
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v − ,  being the shear velocity and  

the longitudinal velocity. Therefore, to compute the wave propagating in a plate, one 
will need to measure the bulk velocities and the plate thickness. 

βv αv

Now suppose that the boundary situated at x equal to 0 is clamped. The well-known 
clamped condition on the transverse displacement w is the following: 
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Numerical Scheme And Stability Criterion 

We chose an explicit finite differences scheme centred in space and in time. We will 
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where  is the double Laplacian operator applied to w at time step n-1, the 
simple sampled Laplacian operator being : 
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Obviously, Eq. 6 allows to compute the displacement at time step n using the 
displacements at previous time steps.  
Thanks to the Fourier stability analysis [9], the stability criterion is the following : for 
a given sampling step in space ∆ (in the case where we took the same in both the x 
and y direction), which is imposed by the smallest wavelength one wants to simulate, 
the sampling step in time must obey the relation : 
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Validation With Experiments Found In Literature 

The advantage of this simulation is that it is expected to reproduce the eigen modes of 
a free vibrating clamped plate. Hazell [10] measured the eigen frequencies of a 
1.83mm by 30.5cm by 30.5cm aluminium plate. From data given in this article, we 
could deduce that the shear velocity was 3000m/s and the longitudinal velocity was 
5874.4m/s. Using these parameters in our simulation, with a sampling step in space of 
2mm, the propagation of a pulse during 50µs was computed. Fig. 6 shows the 
spectrum of the simulated wave at a certain point, compared with the eigen 
frequencies experimentally measured by Hazell : there is a good agreement between 
both, especially at low frequencies, as expected by the theory. 

 
Figure 6 – Solid blue line: Normalized amplitude of FFT of simulated signal in an aluminum 
plate; red markers: experimental eigen-frequencies measured in the same plate in literature. 
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EXPERIMENTAL DETERMINATION OF THE BULK VELOCITIES 

Pulse-Echo Method In The Ultrasonic Range 

The first method that can be used to measure the bulk velocities in the plate is a 
simple pulse-echo measurement. To this end, one needs first a shear transducer, and 
then a longitudinal one. The transducer is glued at the plate surface, and sends a 
pulse; then the same transducer measures the reflected echoes. If the pulse is short 
enough, two successive echoes are well separated, and the time between them allows 
to deduce the velocity.  

However, this technique will give good results with weakly attenuating 
materials only. Indeed, for example in wood, attenuation is so high that in a 5mm 
thick plate, no echo comes back for a 2MHz central frequency pulse. In intermediate 
situations, given that attenuation increases with frequency, the high frequencies 
contained in the pulse can vanish when travelling through the thickness, and the 
measured echo, containing only the lowest frequencies, will arrive with an additional 
delay: the velocity may be underestimated. 

As a conclusion, the pulse-echo method is a good one for weakly attenuating 
media such as metal plates; for other media, another method was developed, as 
presented in the following section. 

Active Method In The Low Frequency Range 

The transducer T (Fig. 1) generates sinusoidal bursts ranging from 1500 Hz to      
5000 Hz for the MDF, with a step of 250 Hz. At these frequencies only a0 Lamb 
mode can be excited. The observed phase velocities are obtained by averaging several 
realizations (also varying ∆x and x0) to reduce the effect of noise. For each frequency, 
the difference between the theoretical va,cal and the experimental va,obs phase velocities 
is computed and optimal values for P-wave and S-wave velocities, vα and vβ, can be 
obtained by minimizing the data residual Rd: 
 2

,, ),(),( βαβα vvvvvvR calaobsad −=  (8) 
The minimization problem is solved with an exhaustive search approach and the 

estimated elastic properties for the MDF board are vα = 2900 m/s and vβ = 1600 m/s. 
These values are in a good agreement with the corresponding ones found in literature. 
Observed data and calculated data are shown in the range of frequencies of the 
measurements in Fig. 7. 

CONCLUSIONS 

A study of the elastic wave propagation in thin plates has been conducted in order to 
develop a method for predicting the board response.  

We presented two complementary approaches: the former excels with large and 
weakly reverberating flexural plates, while the latter with reverberating and weakly 
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attenuative ones. Both methods need to know the excitation signal and the elastic 
parameters of the plate to simulate the propagation in the panels. The signature 
transmitted by a finger touch is estimated through an inverse propagation technique, 
while the elastic properties (bulk velocities) of the board can be recovered from the 
acquired data with two different techniques, based on the estimation of the bulk 
velocities respectively in the low frequency range and in the ultrasonic range. 

We compared the predictions of different plate responses with the 
observation, showing a good agreement on a wide range of situations. 
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Figure 7 - Phase velocities of the a0 mode in the MDF board: measured and calculated data. 
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