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Abstract 
The steelpan is a relatively new percussion instrument developed in the Caribbean country of 
Trinidad and Tobago in the 1930’s. For fullness of sound, it is necessary that its frequency 
spectrum has a strong sense of pitch. This can be achieved if at least the first three natural 
frequencies are integer multiples of the fundamental. It is therefore important that the 
vibration characteristics of the notes be understood. Several parameters affect the vibrational 
modes of each note: its area, height, aspect ratio and thickness. In this work a finite element 
study of the notes of the steelpan was conducted. Relationships indicating the variation of the 
frequency ratios with each parameter were developed. This information can form the basis for 
a shape optimization scheme for the notes of the steelpan.  

INTRODUCTION 

The steelpan is a relatively new percussion instrument developed in the Caribbean 
country of Trinidad and Tobago in the 1930’s. There are a number of playing ranges 
in the steelpan from the tenor pan with 29 notes (from D4 to G6) to the bass pan (G1 
to C4). Each pan is constructed from a portion of a 55 gallon oil drum. The flat end of 
the oil drum is hammered into a shallow well and a portion of the cylindrical part of 
the drum is retained to form the skirt. The concave ellipsoidal shape forms the 
playing portion of the drum. The skirt acts as a resonance chamber; it is relatively 
long for low-pitched instruments such as the bass, cello and guitar steelpans and 
relatively short for the high-pitched pans such as the tenor, the double tenor and the 
double second. This work will examine the vibration pattern of the tenor pan which is 
typically sunk to a depth of about 19 cm and has a skirt about 13 cm in length. A 
schematic of a tenor pan is shown in Figure 1.  
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After the dome has been sunk, the sections and notes of the pan are marked off 
and acoustically separated from each other. This may be done by indenting the 
borders of the notes with a steel punch (grooving) or by making small holes around 
each note. The steelpan is then ‘tempered’ to more evenly distribute the stresses 
induced by prior processing of the instrument. The final stage involves careful tuning 
of the playing surface. The actual note is either flat or slightly convex. Because of the 
variety of these processes, the note domains differ in geometry, in elastic properties 
and in initial stresses. Thus, when the note is properly tuned and impacted, a variety 
of interacting and non-interacting localized modes vibrate based on the natural 
frequencies. 
 

 
 

Figure 1: (a) Schematic of a Typical Steelpan.; (b) Notes on the high tenor steelpan 

There is still much scope for improvement in the manufacturing and tuning 
processes of the steelpan. Currently only experienced panmakers can tune pans and it 
is a relatively slow process. To simplify these processes, it is important that the 
vibration characteristics of the instrument be better understood. In recent years, 
several researchers have investigated the steelpan experimentally. Maharaj 
[1]describes the experimental analysis of the vibrational modes of the tenor steelpan 
using impact excitation, while Rossing et. al. [2] studied these modes using electronic 
TV holography. Muddeen and Copeland [3] examined the acoustic signatures of the 
steelpan. Other work has been done on the mathematical/numerical analysis of the 
steelpan.  In Achong [4], the pan was modeled as a system of interconnected non-
linear shells and the transient vibration behaviour obtained. Gay [5] examined the 
bass tenor pan using the finite element method while Mangaroo [6] developed a 
numerical model of a specific steelpan. This work attempts to identify how the 
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vibration patterns of the steelpan vary with its geometric properties. These 
relationships may then be used to optimize specific note sizes. 

THE FINITE ELEMENT MODEL 

The steelpan is thin in comparison with its span and most of its surface is doubly 
curved, hence its response will be most appropriately modeled using the shell 
equations. These equations are usually written in local coordinates defined by the 
principal radii of curvature at a point and the normal to the surface at that point. The 
geometry of the structure is complex and its principal radii of curvature change 
direction and magnitude as its surface is traversed. Hence a closed form solution of 
the equations is not possible.  

One of the most important features used to describe the response of the 
steelpan is its displacement normal to the shell-like structure under impact. This 
information may then be used to determine the stresses in the system. In general, the 
excited pan will exhibit bending stresses and membrane stresses (from forces acting 
tangential to the mid-surface of the pan). The bending stresses become most crucial at 
those points where the radius of curvature of the shell changes drastically i.e. at the 
roots of the notes.  

Because an exact solution for the steel pan’s response cannot be obtained, 
numerical methods may be used instead. To understand the pan’s dynamics, the body 
is divided into discrete regions (elements) with specified material (mass density, 
modulus of elasticity) and geometric properties (thickness, curvature, size). The 
force-balance equations on each element are then used to “connect” the elements, 
resulting in the matrix equation: 

FuKuCuM
������� =++ ][][][  

from which an overall solution (for variables such as displacement, stress, rotation) 
may be found. Here [M], [C] and [K] are, respectively, the mass, damping and 
stiffness matrices. In this work, the damping in the system is ignored since the 
damping ratio for steel (from which the instrument is made) is typically low.  

Experiments have shown that the steelpan has localized modes of vibration i.e. 
most of the vibrational energy in a steelpan is constrained to the single note that is 
struck. To approximate this behaviour, the note area was considered to be surrounded 
by a rigid internote which minimized the transmission of energy away from the note. 
Hence in the model used, each note was separately analysed, neglecting its effect on 
its neighbours. 

General Modelling Considerations 

Most of the surface of the steelpan is doubly curved and the structure is thin in the 
direction normal to the playing surface. Hence shell elements were used to model the 
motion of the instrument. The stress through the thickness is neglected. 
Reissner/Mindlin assumptions are made, i.e. material particles on a straight line 
perpendicular to the midsection of the shell remain on a straight line during 
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deformations but shear deformations are included so the resulting line need not 
remain perpendicular to the midsection. Each shell element is flat and has a stiffness 
matrix obtained by superimposing plate bending stiffness and plane stress membrane 
stiffness. The consistent mass matrix formulation was used for the dynamic analysis. 
The ADINA software package [7] was used in the analysis. The material properties 
used in the model are those of mild steel i.e. Modulus of Elasticity 200 GPa, 
Poisson’s ratio 0.3 and Density 7850 kg/m3.  

NUMERICAL INVESTIGATION OF THE SINGLE NOTE 

The tenor steelpan consists of 29 notes. There are 12 playing notes in the outer ring 
(D to C#, frequencies 294 to 554 Hz), 12 playing notes in the middle ring (D to C#, 
frequencies 587 to 1109 Hz) and 5 notes (D, Eb E, C, C#, frequencies 1175 to 2218 
Hz) in the inner ring. This work will examine the middle notes. The general shape of 
the note is assumed to be as shown in Figure 2. Physical measurements of the notes 
on the tenor steelpan reveal that, for the middle ring of notes, the major axis length 
varies between 60 and 100 mm while the minor axis length varies between 47 and 70 
mm. The aspect ratio varies between 1.1 and 1.4. The variation of the height of the 
note was assumed to lie between 0 and 5% of the minor axis length. The thickness of 
the pan is measured as 0.25 mm for the middle notes. All these parameters are 
important to the vibration characteristics of each note and the complete pan. 

 
Figure 2: Schematic of a steelpan note 

A generic note was developed to determine the qualitative effect of varying geometric 
parameters of the pan. The generic note had a major axis length of 80 mm, a height of 
1.25 mm, an aspect ratio of 1.25 and a thickness of 0.25 mm. The projection of the 
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dent area is assumed to be 95% of the area enclosed by the groove. Each of these 
parameters is in turn varied to examine its effect on the overall note performance.  
 

t The thickness of the plate 
h The height of the note 
a The length of the major axis 

AR The aspect ratio of the note 
 

Boundary Conditions of the Single Note 

The steelpan exhibits localized vibration when struck i.e. most of the energy is 
concentrated in the note played. This suggests that some basic features of how the 
overall pan behaves may be determined from examining the individual notes. The 
effect of various geometric parameters on the vibration pattern of the system could 
then be assessed. The grooved section of each note acts as an inflexible connector 
between the note and the rest of the steelpan; consequently, the model chosen for 
analyzing each steelpan note assumes rigid body motion of the groove. This condition 
is less restrictive than an assumption of clamped conditions but more constrained than 
the free boundary conditions. For the generic node the normal modes of vibration are 
as shown in Figure 3. 

 
(a)    (b)    (c)    (d) 

Figure 3 The first four mode shapes of the generic vibrating note corresponding to natural 
frequencies of 771 Hz, 1512 Hz, 2115 Hz and 2650 Hz. 

Effect of Aspect Ratio 

One of the easiest geometric properties of the note to visualize is the aspect ratio of 
the elliptical notes. In the initial study the aspect ratio of the grooved area was 
changed without changing any of the other parameters. The area enclosed by the 
groove was also held constant. The fundamental frequency of the note decreased as 
the aspect ratio was increased, as did the second and third overtones. Note also that 

 
   + 

+ 
 
- 

 
+   - 

- 

+
 

- 



J. Bridge 

the ratio of the second natural frequency to the fundamental decreases as the aspect 
ratio is increased, while the third natural frequency ratio increases with aspect ratio. 
Figures 4(a) and (b) show how aspect ratio affects the ratio of the second and third 
natural frequencies with respect to the fundamental frequency. For the generic note 
described above, the maximum second frequency ratio is 1.96 and occurs with a flat 
note with an aspect ratio of 1. Thus the aspect ratio alone cannot be used to achieve 
equally spaced harmonics. 
 

Frequency variation with Aspect Ratio
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Third Frequency variation with Aspect Ratio
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Figure 4 Change in the ratio of the (a) second and (b) third natural frequencies with respect 
to the fundamental frequency as the aspect ratio is varied.  
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Figure 5 Change in the ratio of the (a) second and (b) third natural frequencies with respect 
to the fundamental frequency as the dent height is varied. 

Effect of Note Height 

Another key factor affecting the note vibration is the height of the note. As the note 
height increases the fundamental frequency and the first two partials increase. Figure 
5 shows the variation in the frequency ratios as the note height is varied. The ratio of 
the first three partials to the fundamental frequency also increases. This means that 
one is able to use the note height only to achieve the desired frequency ratios between 
the fundamental and the first partial. However, when the first partial is an integer, the 
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third partial is not. This means that another means of changing the frequency ratio is 
needed.  

Effect of Thickness 

As the thickness of the plate decreases the frequency increases. The thickness affects 
both the stiffness of the plate (order t3) and the mass per unit area of the plate (order 
t). Hence the net effect will be an increase in frequency as the thickness increases. For 
a flat note there is a linear relationship between the thickness and the natural 
frequencies; therefore, changing the thickness alone cannot ensure that the second 
natural frequency is a harmonic of the first. 

For the raised note most of the vibration of the system takes place in the flat 
portion of the note. The resulting frequency is dependent on the effective boundary 
conditions provided by the root of the note and hence depends on the relative 
geometry of this system. The ratio of the radius of curvature of the crown root 
interface and the thickness will therefore be constantly varying. Hence there is not a 
strict linear relationship between frequency and thickness. In general, as the thickness 
decreases the ratio of fn/f1 increases. Figure 6 shows the variation for a dent height of 
5%.  
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Figure 6 Variation of the Natural Frequencies with thickness 

Effect of Major Axis Length 

The ratio between fn/f1 is a constant for any two values of major axis length. If the 
aspect ratio is held constant, then one can normalize all the lineal dimensions with 
respect to the major axis length and obtain a normalized shape which does not differ 
for the system described above.  

With all the other parameters fixed, as the major axis length increases the 
frequency  decreases; this is consistent with observations of the steelpan. In fact the 
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relationship is of the form, r2fn=c, where r is the major axis length. Since the tenor 
pan notes are each separated by a ratio of 12

1

2 , the ratio of the effective length of two 
consecutive notes in each section of the pan (outer, middle, inner) should be 
approximately 0.97 (i.e. 24

1

2 ). 

CONCLUSIONS 

The steelpan is a musical instrument; for fullness of sound, it is necessary that its 
frequency spectrum has a strong sense of pitch. This can only be achieved if at least 
the first three natural frequencies are integer multiples of the fundamental. It is 
therefore important that the vibration characteristics of the notes be understood as a 
function of the geometric properties of the pan. This will enable the manufacturing 
and tuning processes of the instrument to be simplified. In this work, several 
theoretical relationships were determined. 
 It was observed that the assumption that the groove acts as a rigid body 
connector allows one to investigate the localized vibration of each note, while 
keeping some of the characteristics exhibited in the general vibration of the overall 
steelpan. It was noted that for a fixed thickness, the optimal relationship between 
lengths of successive notes is 1: 0.97. The frequency increased with thickness in a 
nonlinear manner for the curved notes. This was mainly due to the large change in 
radius of curvature at the root of the note. As the note height is increased each 
frequency increases. However, the ratio of the partials to the fundamental frequency 
decreases, until it reaches a minimum at about 2% of the minor axis length and then 
begins to increase again. These observations will form the basis for an effort to 
optimize the shape of each note. 
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