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Abstract 
The inverse sound source reconstruction addressed in this paper seeks, given a transmission 

matrix, to reconstruct the monopole distribution on the source surface using measured sound 

pressure data. Here the focus is on the transmission matrix. Conventional inverse methods use 

transmission matrices with point to point transfer functions, that is,  transfer functions from 

volume velocity in discrete source positions to local acoustic field variables. The resulting 

transmission matrix is ill-conditioned and needs regularisation, with consequent loss of 

accuracy. Unlike the conventional methods, the new method proposed in this paper uses 

transfer functions from source positions to global  field variables. These global variables, the 

components of the spherical wave spectrum, are obtained through expansion of the pressure 

field in terms of spherical harmonics. In this paper the performance of this new formulation is 

compared with that of the conventional inverse reconstruction scheme. 

INTRODUCTION 

From an acoustical point of view any operating source may be substituted by the non-

operating source covered by a sufficient number of substitution monopoles displaying 

a well defined volume velocity distribution and mutual phase relationship. The 

inverse sound source reconstruction addressed in this paper seeks, given a 

transmission matrix, to reconstruct this monopole distribution using measured sound 

pressure data. Unfortunately, sound pressure measurements are always contaminated 

with measurement errors. Whereas systematic errors may be eliminated by careful 

calibration, the burden of the random noise superimposed on the signals remains. 

These random errors may lead to large spurious volume velocities unless the 
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transmission matrix is sufficiently well conditioned or else the measurement errors 

are sufficiently small.  

Conventional inverse methods use transmission matrices with point to point 

transfer functions, that is,  transfer functions from volume velocity in discrete source 

positions to local acoustic field variables. In general these transmission matrices are 

ill-conditioned and need regularisation in order to prevent the occurrence of large 

spurious volume velocities. Unlike the conventional methods, the new method 

proposed in this paper uses transfer functions from source positions to global  field 

variables. These global variables, the components of the spherical wave spectrum, are 

obtained through expansion of the pressure field in terms of spherical harmonics. 

The idea behind this alternative formulation of the inverse problem is that the 

spherical harmonic transform is expected to reduce, through the surface integration, 

the effects of random pressure measurement errors. This is especially true for the low 

order spectrum components representing spatial frequencies which are much lower 

than those introduced by the random noise. In this paper the new inverse formulation 

is presented and its performance compared with that of the conventional inverse 

reconstruction scheme through numerical experiments. 

THEORY 

Spherical harmonics 

For an exhaustive treatment of spherical harmonics the reader is referred to [1]. A 

brief overview is given here. Any arbitrary pressure distribution ( )φθ ,p  on a sphere 

can be expanded in terms of spherical harmonics ( )φθ ,m

nY  of order n and rank m: 
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where m

nP   are associated Legendre functions, θ   is the polar angle (
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and φ   is the azimuthally angle ( πφ 20 ≤≤  ). Owing to the orthonormality of the 

spherical harmonics, the complex coefficients nmc  , also referred to as the spherical 

wave spectrum, may be obtained from 
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where the integration is carried out over the surface S  of an unit sphere.  

 A new formulation for the acoustical inverse problem 

Consider a non operating source structure. Assume that N  monopoles are chosen in 

arbitrary positions on its surface and that their volume velocity is given by a vector 

u . The resulting sound pressure distribution on a spherical surface containing the 

source structure is expanded in terms of spherical harmonics. The first M  spherical 

wave spectrum components resulting from this expansion are stored in vector c . By 

invoking the superposition principle (the spherical wave spectrum of the total field 

may be obtained by the sum of the spherical wave spectra of each monopole), this 

radiation problem may be written as 

 [ ]uHc = , (4) 

where [ ]H  is a NM ×  transmission matrix of complex frequency response functions 

relating the source strength of each single monopole to its spherical wave spectrum 

components. When written in full equation (4) becomes 
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where the superscript of the transmission matrix components refers to the source 

position, whereas the subscripts refer respectively to order and rank of the spherical 

harmonics involved.  

As mentioned before, the inverse sound source reconstruction addressed in this paper 

seeks, given a transmission matrix, to reconstruct the monopole distribution on the 

source surface using measured sound field data of the operating source. In order to do 

so the complex sound pressure field due to the actual source is measured on the 

sphere and expanded in terms of spherical harmonics. The spherical wave spectrum 

components obtained from these measured sound pressure data are stored in vector ĉ . 

The optimal estimate of the source strength vector 0u may now be obtained as 

 [ ] cHu
0

ˆ+
= , (6) 
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where [ ]+
H is the pseudo-inverse (Moore-Penrose) of the matrix [ ]H , resulting in a 

“least square” solution for the complex source strengths sought.  

Discrete spherical harmonic transform 

In practice, the sound field is sampled only at a finite number of discrete positions 

around the source and the wave spectrum integral (3) is approximated by a double 

summation. The angular discretisation steps were chosen 9/πφθ =∆=∆ , 

corresponding with 146 microphone positions. The results reported in this work were 

achieved using a very simple zero-order integration scheme. Both the spherical 

harmonics and the pressure field were evaluated in the microphone positions and 

considered constant within each integration step.  

In order to prevent aliasing effects due to the spatial sampling, the number of 

computed wave spectrum components has been limited (equivalent Nyquist criterion). 

For the present sample distribution the series expansion was truncated at order n = 6 

(see [2]), corresponding with 49 harmonics. 

NUMERICAL EXPERIMENTS 

Description of the experiments 

The source to be reconstructed consists of a cluster of monopoles in free space. The 

sound pressure is calculated in the 146 above mentioned discrete points, the 

“microphone” positions, on a spherical surface enclosing the monopoles.  

The conventional transmission matrix was simply obtained by assigning unitary 

volume velocity to each single monopole, one by one, and calculating the sound 

pressure in all microphone positions. The spherical transmission matrix was obtained 

by applying the discrete spherical harmonic transform to the sound field of each 

unitary monopole.  

Next the sound pressure vector was calculated for the particular source strength 

distribution to be reconstructed and random noise was added. This corrupted sound 

pressure vector represented the “measured” source field to be used straightforwardly 

for reconstruction with the conventional transmission matrix and after the discrete 

spherical harmonic transform, for the reconstruction with the novel transmission 

matrix. The errors in the transmission matrix are 

due to round-off errors and are negligible as 

compared to the errors in the pressure vector. 

Results 

The source configuration used for the numerical 

experiments consists of N = 20 monopoles 

distributed randomly within the space between 

two concentric spheres of R = 0.4 and R = 0.5 
Figure 1 -  Source configuration. 
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(see Figure 1). The calculated pressure vector was contaminated with an error varying 

randomly between  1± dB and 3±  degrees. This random error is identical at all 

frequencies.  
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Figure 2 – Pressure vector errors (50 of 146) and resulting spherical wave spectrum errors 

at 100 and 500 Hz. 

Before proceeding to the 

inversion, the optimal number 

M of wave spectrum 

components to be included in 

the analysis has to be assessed. 

In any case this number must 

be larger than N = 20 in order 

to assure an unique solution. 

The optimal M-value depends 

on two factors: the condition 

number of the matrix and the 

error in the wave spectrum 

vector. In order to gain more 

insight in this matter, the 

behaviour of these two 

parameters was studied at two 

frequencies: 100 and 500 Hz. 

  At 100 Hz the errors in 

the wave spectrum vector ĉ , 

indeed, turn out to be reduced 
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Figure 3 – Condition number of spherical and 

conventional matrices at 100 Hz. 
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as compared to the errors introduced into the original pressure vector, but only for the 

first 6 spectral components (see Figure 2). From the 6
th

 until the 15
th

 component the 

errors are roughly comparable. Above the 15
th

 component the error in the spherical 

wave spectrum grows rapidly. This is due to the fact that at 100 Hz the source 

generates a very smooth pressure distribution which contains almost exclusively low 

order spherical wave spectrum components. The high order wave spectrum contents 

mainly describe the noise and not the signal, resulting in large errors. The condition 

number at 100 Hz is presented in Figure 3 both for the conventional and the spherical 

transmission matrices. In this figure the abscissa represents the number of wave 

spectrum components (for the spherical case), or alternatively the number of 

microphone positions (for the conventional case ) included in the analysis. The 

conventional system shows an almost monotonically decreasing condition number, as 

a result of growing overdimensioning of the inverse problem. The size of the 

conventional system was varied by choosing microphone configurations according to 

kπφθ =∆=∆ , with .9,,5,4 L=k  Since the error is constant the best results are 

obtained using all 146 microphones. The spherical system, on the other hand, exhibits 

a strongly decreasing condition number while the error is increasing. The condition 

number turns out to dominate and the best result is again obtained including all 49 

components of the spherical spectrum. 

Conventional and spherical reconstructions are compared in Figure 4, before 

and after regularisation (Tikhonov regularisation with L-curve parameter selection). 

The two inverse formulations turn out to give equivalent results.  
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Figure 4 – Source vector reconstructions at 100 Hz. 

It must however be noted that the size of the inversion problem has been 

reduced by switching to spherical harmonics, in our case with approximately a factor 

three. Since matrix inversion is typically an 3M process, this operation has been 

accelerated by a factor of roughly 27. On the other hand, however, it takes more time 

to assemble the field vector and the transmission matrix associated with the spherical 



ICSV13, July 2-6, 2006, Vienna, Austria 

formulation, as they involve a discrete spherical harmonic transform. For the code 

used in this study, the new spherical wave spectrum based method resulted in a 

reduction of the calculation time with a factor of  2. 

It should also be noted 

that, as such, the spherical 

matrix features a much better 

condition, which is only 

equalled or improved by the 

conventional system trough 

massive overdimensioning. 

This is however an intrinsic 

advantage of the classical 

approach as there are always 

much more microphones than 

spherical spectrum 

components. 

At 500 Hz the situation 

of the wave spectrum vector ĉ   

improves for higher orders, 

showing smaller errors than 

the 100 Hz case (see Figure 2). 

All in all, however, the 

spherical harmonic transform 

turned out to have a negative 

effect on the error rather than being beneficial. The condition of the spherical matrix, 

on the other hand, again turned out better than its conventional counterpart. 
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Figure 6 – Source vector reconstruction at 500 Hz. 
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Figure 5 - Condition number of spherical and 

conventional matrices at 500 Hz. 
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Again the best condition was obtained for maximum overdimensioning, this 

time, however, the spherical matrix reached a slightly lower final condition number 

than the conventional one (Figure 5). 

In Figure 6 the reconstructed volume velocity vector is compared to the original 

one. The quality of the two reconstruction methods, conventional and spherical, again 

proves equivalent. Regularisation has almost no effect due to the excellent initial 

matrix conditions. 

It must be emphasised that in the presented case study the positions of the 

substitution monopoles correspond with the source monopoles. The solution space 

therefore contains the actual source configuration. In practice, however, the source is 

unknown and the substitution monopoles must therefore be chosen arbitrarily 

resulting in an incomplete solution space (see [3]). The effect of an incomplete 

solution space on the performance of the different inverse formulations has not yet 

been investigated.   

SUMMARY 

The discrete inverse source reconstruction problem could be reformulated by 

expanding the pressure field in terms of spherical harmonics. The performance of this 

new formulation was evaluated through numerical experiments. In particular the 

analysis concentrated on the random errors in the field vector and the condition of the 

transmission matrix. The following trends have been observed: 

 

- the discrete spherical harmonic transform of noisy pressure data results in 

error amplification, especially for high order spectral components,  

- the “spherical” transmission matrix is generally better conditioned than the 

conventional one (and overdimensioning helps a lot), 

- reconstruction results appear to be equivalent, 

- the spherical problem is smaller and therefore faster. 
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