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Abstract 
A rotary oil well drill-string is primarily composed of drill-pipes and drill-collars. Its role is 
to convey a rotary downward motion to the drill-bit and to circulate the drilling fluid (drilling 
mud). A drilling borehole is cylindrically layered waveguide, consisting of mud inside the 
drillstring, mud outside the drillstring, and the formation. To learn how sound waves 
propagate in this layered medium, an infinitely long, uniform, three-layered waveguide 
surrounded by a radially infinite homogeneous formation is analyzed. The first layer is the 
inner mud, the second is the uniform pipe, and the third is the outer mud layer. The mud as 
well as the pipe and formation, are assumed to be homogeneous. It is also assumed that the 
steady mud velocity is slow compared to sound propagation speed in the mud and that static 
pressure in the mud is low compared to the bulk modulus, allowing their effects to be 
neglected. In this paper, an analysis of wave propagation in drilling borehole are greatly 
simplified by assuming axial symmetry and low frequencies with long wavelengths, 
compared to the borehole radius. Derivation and solution of equations of motion are 
presented. The non-dimensional parameters for determining the degree of the interactions 
among the layers are explained. Sound reflection due to the changes in the cross section is 
discussed. One important application of this analysis is to mud pulse telemetry systems. 
Finally, the key results are summarized and discussed. 

INTRODUCTION 

A drilling system consist of a series of hollow cylindrical steel pipes connected to 
form a long flexible drillstring to which is attached a short heavier segment 
containing a drillbit at the free end. This segment may contain stabilizing fins and 
together with the drillbit constitutes the bottom-hole assembly (BHA). The drillstring 
is driven in a rotary fashion from the top end, often by means of an electric motor and 
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gearbox, the top-drive, and constrained to pass at a controlled rate through a rotating 
mass (the rotary) near the surface. Such a drilling system is designed to construct a 
borehole linking the earth’s surface to a reservoir of oil or gas, as shown in Fig. 1. 
The borehole is lined (usually with steel) and the excess in the diameter of this cavity 
over the diameter of the drillpipe is referred to below as the over gauge. This annular 
gap (which in general varies along the borehole) is necessary for the conduction of 
fluids. During the process of drilling pressurized fluid (mud) is continuously 
circulated down the centre of the drillstring, out of holes in the drillbit and back to the 
surface via the space between the rotating drillstring and the surface of the borehole. 
The dynamic behavior of a drillstring includes essentially of axial, bending, torsional 
and whirling motion [1]. Among these, axial vibration has received the most attention 
in the literature [2-3]. To know how a drillstring, mud, and surrounding formation 
interact in axial wave propagation, an infinitely-long, uniform and cylindrically three-
layered (the inner mud, the uniform pipe and the outer mud, respectively) wave guide 
is assessed in this paper. In other word, to know how sound wave propagates in the 
layered medium (drilling bore hole), an infinitely uniform, long, three-layered 
waveguide surrounded by a radially infinite homogeneous formation is analyzed. 
Mitchell [4] studied the coupling between the inner and the outer mud pressures 
through pipe elasticity. Wave propagation in fluid-filled bore hole with one fluid 
layer is known [5, 6]. The change of sound propagation speed in mud due to depth 
and viscosity of mud are neglected for simplicity. It is also assumed that the steady 
mud velocity is slow compared to sound propagation speed in the mud and that static 
pressure in the mud is low compared to the bulk modulus, allowing their effects to be 
neglected. In this paper, a study of wave propagation in drilling borehole are greatly 
simplified by assuming axial symmetry and low frequencies with long wavelengths, 
compared to the borehole radius. 

EQUATIONS OF ELASTIC MOTION 

If a circular pipe vibrates in a borehole as shown in Fig. 2, the deformation produced 
is symmetric about the axis of the cylindrical pipe. also, if the frequency is assumed 
to be low, then: 
 

bcφπω 2<<  , bcψπω 2<< , bcxπω 2<<  
(1) 

ccoπω 2<< , ccxπω 2<<  
  
where: ω  is circular frequency, φc and ψc  are propagation speed of dilational and 
shear wave of pipe, respectively, xc  is wave propagation speed in the axial direction, 
b is outer radius of pipe, oc  is wave propagation speed in mud and c is borehole 
radius. 
With the previous presumptions, the equation of axial motion of a uniform pipe in the 
borehole can be obtained as follow: 
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where the subscript ip,  and o  are pipe, inner mud and outer mud respectively, ρ  is 
density, E  is the Young’s modulus, u  is the axial displacement of pipe, and a  is the 
inner radius of pipe. 
Also, the equations of axial motions of inner and outer mud are obtained as follow: 
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where K  is bulk modulus of mud. The radial displacements of the boundaries can be 
obtained in terms of the axial displacements of the pipe and mud pressures. Therefore 
the equations of motion can be expressed in terms of axial displacements only. In 
matrix form, they are shown as follow: 
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where: 
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where baba PPP ,, and baP  are the static radial spring constants of the pipe [5], '

aP  is 
the ip  (static inner mud pressure) required to obtain unit area strain of inner mud 
layer, in the absence of outer mud pressure, '

abP  is the op  (static outer mud pressure) 
required to obtain unit area strain of inner mud layer, in the absence of outer mud 
pressure, '

bP  is the op  required to obtain unit area strain of outer mud layer to bru =  
only, in the absence of inner mud pressure, '

cP  is the op  required to obtain unit area 
strain of outer mud layer to cru =  only, in the absence of inner mud pressure, '

baP  is 
the ip  required to obtain unit area strain of outer mud layer, in the absence of outer 

mud pressure and cP (
c
G2

=  ) is the equivalent radial spring constant of the formations 

and G  is shear modulus. 
The Eq. (5) is shown a set of coupled equations of the axial motions of the pipe, inner 
mud and outer mud. If assume a wave-form solution for ip uu , and ou , then the Eq. (5) 
become an eigenvalue problem. The eigenvalues are squares of the wave propagation 
speeds in the axial direction. There are three eigenvalue. For each eigenvalue a 
corresponding eigenvector or mode shape can be obtained from it.  
Corresponding mode shapes of related variables such as the axial velocities, axial 
stress, pressures and radial displacements can be obtained for each mode shape of 
axial displacement as shown: 
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where: ip vv ,  and ov are axial velocity of pipe, inner mud and outer mode, respectively, 

ip p,σ  and op  are axial tensile stress in pipe, pressures in inner mud and outer mode, 
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respectively and n  is mode number ( 32,1 andn = ). 

Modal analysis 

If a harmonic pressure disturbance{ } tief ω  is defined at 0=x  in semi-infinite 
borehole, then the solution can be represented as superposition of the set of modes as 
follow: 
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The 1B , 2B  and 3B  are determined from the boundary condition:{ }
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as shown: 
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A disturbance introduced in the borehole decomposes into three modal components, 
each propagation at its own speed with its own distribution of pressures in the mud 
layers and axial stress in the pipe. 

Non-dimensional parameters 

If neglect the off-diagonal terms in Eq. 5, then three uncoupled equations are 
obtained. Their eigenvalues and uncoupled speeds are proper in producing non-
dimensional parameters obvious the importance of the coupling between the outer 
and inner mud. The uncoupled speeds become: 
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where: pc  is wave propagation speed of a radially-free pipe or bar speed and mc  is 
wave propagation speed of mud inside a rigid pipe. The uncoupled speeds in the mud 
can be non-dimensional by dividing by mc  as follow: 
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and 'C is defined as follow: 
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 If KPa >>

' , in other words the pipe is high stiff compared to the bulk modulus of the 
mud, then there would be no coupling between the inner and outer mud. 

APPLICATIONS 

 
An example is presented for a typical drillpipe. The example is for a m32.0  borehole 
with a m127.0  steel drillpipe. Clay was selected for formation. The input parameters 
used for the Clay are given below: 

sec6048.495,6596.199 mcMpaG == φ and sec5808.303 mc =ψ  
and non-dimensional parameters are: 

249.0,927.0,085.15,028.0,164.0 ''' ===== oi
cba

CC
P
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P
K

P
K  and 269.0' =C  

Also the propagation speeds of each mode and uncoupled as follow: 
sec3152.3881 mcx = , sec1424.14442 mcx = , sec3976.51623 mcx =  

and sec3152.388' mcxo = , sec4472.1444' mcxi = , sec976.5141' mcxp =  

where sec/4424.1558 mK m =ρ . 
The pressure mode shapes are obtained as shown below: 
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2- Second mode, sec1424.14442 mcx = :














−
=

















081.0
1
554.5

2o

i

p

p
p
σ

 

3- Third mode, sec3976.51623 mcx = :   
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In the example 269.0' =C  is less than unity, it can be seen that there is little 
interaction between pressures in the inner mud and the outer mud. The propagation 
speed of the pipe mode is hardly influenced by the interaction, increasing 0.4% in 
clay. Therefore, if just the pipe axial vibration due to excitation in the pipe is of 
interest, then the effect of the mud and formation may usually be neglected. 

REFLECTIONS AT DISCONTINUITIES IN CROSS-SECTIONECTION  

In a borehole reflection of axial waves may occur at discontinuities in cross-section, 
in material properties or in both [7, 8]. Two different semi-infinite boreholes joined at 

0=x  are shown in Fig. 3. Each of three modal components arrives at junction, it will 
create three transmitted modal components and three reflected components. Each 
reflected and transmitted modal component will propagate at its own speed. The 
boundary conditions at the junction require balance of force and continuity of velocity 
for the pipe [7], and mass conservation and continuity of pressure for the inner and 
outer mud layers [8]. Velocities can be calculated from pressures. If introduce the 
reflected and transmitted waves in terms of the modes of the first and second borehole 
and to take into the boundary conditions, the amplitudes of the reflected and 
transmitted waves for each mode are determined.   

SUMMARY 

To explain how drillstring, mud, and formation interact in axial wave propagation, a 
drilling borehole, which is infinitely–long, uniform, and cylindrically multi–layered 
waveguide, was analyzed. The results revealed that there are three principal modes of 
propagation in a drilling borehole, each one travels at its own propagating speed. The 
fastest was the pipe mode which is dominated by a stress wave in the pipe, and is the 
mode that one would normally associate with drillstring axial vibration. The mud 
coupling effect is generally negligible in this pipe mode. The other two were the mud 
acoustic modes, which are dominated by pressures in the inner mud and \ or outer 
mud. In these mud modes, the pressure in the inner mud and outer mud interact 
through the radial flexibility of the pipe. Each mode has a unique mode shape or 
distribution of pressure in the inner and outer mud and axial stress in the pipe. 
Significant reflections of propagating modes may occur at discontinuities in borehole 
diameter or hardness of formation. 
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Figure 1– A sketch of the drillstring with the rotary table drive system 
 

 

 
 

Figure 2 – Uniform pipe in a 
homogeneous formation 

 

Figure 3 – Discontinuities in borehole 
cross-section 
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