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Abstract 
The short-time Fourier transform (STFT) yields a complex distribution function which 
includes amplitude and phase information. Until recently, the results of STFT calculations 
have always been presented in the form of a power spectrogram where only the amplitude 
value of the STFT is shown. However, the amplitude value contains only a small part of the 
phase information and reciprocally for the phase value, which means that we are deprived of 
an important source of information. The aim of this paper is to present two different ways of 
using the STFT phase information. The frequency spectrogram is calculated from the phase 
difference between each time slice of the STFT. The frequency spectrogram shows the drift 
on the instantaneous frequency of each spectral component. The time integral of the 
frequency spectrogram yields the phase spectrogram. The phase spectrogram supplies 
information about the phase modulations of each spectral component around a reference time 
point.  These tools have proven to be useful complements to the power spectrogram. Digital 
simulations together with examples from measurements of mechanical vibrations bear 
witness to their usefulness and accuracy. 

INTRODUCTION 

D. Gabor [1] and J. Ville [2] introduced the concept of time-frequency representation 
in the mid 1940s.  Since then, many efforts have been invested to combine and 
consolidate the different approaches under Cohen’s class [3].  However, although 
certain algorithms make use of the phase in the time-frequency plane [4-6], no author 
has come up with a way to graphically represent the phase in this plane.   

In the proposed algorithm, our starting point is the Short Time Fourier 
Transform (STFT)  
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of a continuous analytical time signal s(t),with Fs τ,ν( ) denoting the complex 

distribution function and ( )*h t τ− , the conjugate of the spectral window used as a 

time-frequency kernel.  The resulting product ( ) ( )*, ,s sF Fτ ν τ ν⋅  gives the 
spectrogram.  In this text, we will refer to the ‘power spectrogram’ when we refer to 
this product, as opposed to the ‘phase spectrogram’ and ‘frequency spectrogram’, 
which will be introduced later. 
 For real measurements, the computer processes a discrete real signal ns  and the 
STFT becomes  
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where nh denotes the time samples of a spectral widow, i is the index of spectral line, 
m is the index of the time slice and l is the number of time samples between two 
consecutive time slices in the spectrogram.  In the resulting spectrogram, the time and 
frequency resolution compromise is fixed by the time length N. The l parameter fixes 
the time-slicing step of the spectrogram.  

This paper explains how the phase spectrogram, using the phase of Sm,i, 
provides access to a source of information which completes that offered by the power 
spectrogram.  The information in a phase spectrogram can take different forms.  The 
easiest to understand intuitively is the phase variation of a sine wave compared to a 
reference sine wave, the latter being the same sine wave taken at a given time and not 
having changed its frequency since.  On the other hand, in deriving this phase, we 
generate a frequency spectrogram that gives us a different perception of the 
instantaneous frequency.  

PHASE UNWRAPPING  

In this text, we use underscored notations to mean that the θ  phase is contained 
within the trigonometric circle.  The underscored operator  

 { }2mod π π π∗ = ∗+ −  (3) 
therefore removes the 2π multiple value in the operand. The phase value ,m iθ  comes 

from the trigonometric function atan2(*,*) applied to the result of the STFT such that  

 ( ) ( )( ), , ,atan 2 Re , Imm i m i m iS Sθ =
 (4) 

with ] ], ,m iθ π π∈ − . However, the latter phase value corresponds to the projection of 

the unwrapped phase in the trigonometric circle.  The unwrapped phase value  
 , , , 2m i m i m iθ θ ϑ π= + ⋅   with ϑ ∈ , (5) 

differs by ϑ  rotations in the trigonometric circle; we know the position of the phase 
on the circle but not the number of rotations.  Phase unwrapping amounts to finding 
this number, which is done progressively by tracing round the trigonometric circle 
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repetitively, usually starting from a chosen reference point.  
Several publications deal with phase unwrapping on the frequency axis [7-12] 

but no author presents the phase unwrapping on the time axis in the time-frequency 
plane.  However, whether it be the frequency or the time axis, phase unwrapping 
consists in selecting the shortest path on the trigonometric circle.  Classically, the 
unwrapping can only be achieved if the phase does not vary by more than π radians 
between two successive time slices.  In the proposed algorithm, the phase may vary 
by many π radians between two successive time slices. 

The phase-unwrapping algorithm in time is recursive and usually starts with the 
first time slice. A simple form of this algorithm, starting with the first sample, 
consists in writing 
 , , , 2m i m i m iθ θ ϑ π∗ = + ⋅   with ,m iϑ ∈ , (6) 

where ϑ m  corresponds to the number of rotations or turns completed in the 
trigonometric circle.  The integer ϑ m,i  is established recursively such that 
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so that any phase shift with an amplitude exceeding π can be attributed to the fact that 
the boundary - π / π of the trigonometric circle has been crossed.  If the phase 
sampling condition is respected, then θm ,i

* = θm,i .  For simplification, we write 

 ( ), ,unwrapm i m iθ θ=  (8) 

to express the unwrapping of the phase. The operator unwraps the phase without 
worrying about there being possibly n extra 2π radians between two consecutive time 
slices. 

FREQUENCY SPECTROGRAM 

The wrapped frequency spectrogram  

 ( ) ( ), , 1,2
s

m i m i m i
ff P P
l P

θ θ
π −≡ ⋅ −

⋅ ⋅
  (9) 

is obtained from the phase difference between successive time slices of the STFT 
where P ∈  and sf  is the sampling rate.  A mathematical demonstration has been 
developed and can be found in [13].  The gain P multiplies the sensitivity expressed 
as the fringes per Hz in such a way that  

 ( ), ,
2 2

s s
m i

f ff P
lP lP

⎤ ⎤∈ −⎥ ⎥⎦ ⎦
 (10) 

defines the frequency axis scaling.  All we need do is display the frequency on a scale 
of colors where the two extremes - fs/2lP and fs/2lP have the same color, in order to 
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watch the frequency develop without any break in the progression.  The gain P is 
adjusted so that the progression can be monitored and we can easily count the fringes 
on the screen.  The sensitivity fs/lP is expressed in Hz/fringe. 

We should emphasize that this definition of the frequency spectrogram depends 

largely on the equality ( ) ( ), 1, , 1, 2m i m i m i m iP Pθ θ θ θ ϑ π− −− = − +  for integers ϑ  and 

P.  With an integer value gain, we amplify the phase difference between two time 
slices without any disturbance from an error in the estimation of a phase of “ϑ ” turns 
in the trigonometric circle: we no longer need to know the number of rotations of the 
unwrapped phase value before applying the gain.  

 

 
Figure 1 – Time series, power spectrogram and frequency spectrogram of an amplitude-
modulated generated signal (left) and of a frequency-modulated generated signal (right). 

 
Once an integer value gain has been applied, we can unwrap the phase.  In fact, 

the unwrapped frequency spectrogram 

 
( ) ( )( ) ( )( )U
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θ θ θ θ
π − −
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 for m = 2, 3, 4 ,…, M (11) 
allows us to display the frequency relative to the reference slice mr on a continuous 
scale. The frequency presents the same topological characteristic as the phase in the 
trigonometric circle, which means that it can be illustrated as superposed on a cyclic 
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scale (Eq. 9) or unwrapped on a conventional scale (Eq. 11). 
The term ( ), 1,m i m iP θ θ −−  in Eqs.9 and 11 can be replaced by  

 ( ), 1,
1

PN

k m k i m k i
k

P θ θ+ + −
=

−∑  (12) 

for weighting the computation of the phase derivative.  This smoothing distributes the 
gain P according to an approximately Gaussian distribution of smaller weight Pi so 
that 
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k
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=

= ∑  (13) 

with integers Pi.  The advantage of the weighting is that we obtain smoothing with a 
Gaussian distribution whereas increasing the distance l between slices amounts to 
having a smoothing with a rectangular window where P= Pi Np. 

Figure 1 depicts the processing results of two numerically-generated cosines. 
Amplitude modulation shows a horizontal fringe pattern (Fig. 1 left). On the opposite, 
the modulation of phase or frequency generates a fringe pattern perpendicular to the 
path of the sine wave in the time-frequency plane (Fig. 1 right). Since the 
instantaneous frequency of a sine wave has no significance other than below the main 
lobe of the corresponding spectral component, only the result under the main lobe is 
displayed. In order to do this, we fill in the corresponding power spectrogram valleys 
in black to drown the secondary components with the lowest amplitudes. The height 
of the filling is adjusted manually by the user, depending on the amount of 
information to be underlined. For the amplitude modulated examples, a 4X spectral 
interpolation is required to be able to display smoothly the fringe pattern.  

PHASE SPECTROGRAM  

The phase difference is equal to 

 ( )U
,2 ,m i r

s

l P f P m C
f

π ⋅
⋅ ⋅ +  (14) 

between two successive time slices where C is an unknown corresponding to the 
number of complete turns in the trigonometric circle between two successive slices of 
the STFT.  The mean frequency of the component thus determines the magnitude of 
C.  The information that C contains is of little use because the focus of our interest is 
the phase variations around the mean increment in the phase increase, not the slope of 
the phase increase due to the mean frequency of the component.  Therefore, if we 
remove C from the computation, numerical integration of the type:  
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yields an unwrapped-phase value starting from the first time slice.  In (15), the phase 
calculation is referenced to both the first slice for calculating the phase and slice mr 
for calculating the reference frequency.  The latter frequency determines the phase 
constant to be removed between each slice so as to eliminate the constant term of the 
phase increase.  The generalized phase spectrogram defined as 
 

 ( ) ( ) ( )G
, , ,, , ,

rm i r m i r m i rP m P m P mθ ≡ Φ − Φ  (16) 
 
allows us to refer both the phase calculation and the frequency calculation 
simultaneously to the mr

th time slice.  For a display with a succession of fringes, we 
use this presentation ( )G

, ,m i rP mθ  but we could also write 
 

 ( ) ( )G
, , 1,

1, ,
1m i m i r M i r

mP m P m
M

θ −
−

= Φ − Φ
−

 (17) 

 
if we want to impose a null phase value on the two extremities of the measurement as 
in the phase spectrogram illustrated in Fig. 2. 
 
 
 

Figure 2 - Phase spectrogram of a 
sine wave with a phase modulation 
of ±π radians, with fs=2 ks/s 
(N=128 samples, 2X spectral  
interpolation, l=5 and P=1)  Note the 
π/2 radians delay between the 
frequency and phase. The power 
spectrogram is shown in Fig. 1, right. 

 
 If the distance l and the distribution Pi have an influence on the variance in the 
frequency spectrogram, they have none on the phase spectrogram [13].  In the latter 
case, the distance l affects the graphic definition on the time axis while the weight P 
restrains the phase to the interval ] -π/P, π/P], superposing the distribution of phase 
values for no useful purpose.  The weight P is therefore set at unity for calculating the 
phase spectrogram and the feature proposed in Eq.12 is not used. The numerical 
example in Fig. 2, the function ( )( )cos 2 200Hz cos 2 2Hzt tπ π π⋅ ⋅ + ⋅ ⋅ ⋅ , shows the 
presence of a uniform phase plateau across the width of the main lobe of the 
component. Also, as in the frequency spectrogram with a phase modulation, the phase 
spectrogram of a phase modulation shows perpendicular fringes in the path of the sine 
wave while an amplitude modulation shows fringes in the opposite direction on the 
phase spectrogram (not illustrated. See [13]). 
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APPLICATIONS TO MONITORING AND DIAGNOSTICS 

A vibrating-string sensor is commonly used for concrete deformation measurements 
in bridges and dams. The string frequency is a linear function of the deformation. 
Some of these sensors comprise an excitation coil and a reading coil, both connected 
to an electronic conditioner. In the continuous-excitation operating mode, the coils 
and conditioner are connected in a closed-loop feedback. Figure 3 illustrates the 
sensitivity of the apparatus to an electromagnetic disturbance at power system 
frequency when the string was tested in our laboratory. The frequency spectrogram 
shows a 5-Hz peak-to-peak frequency ripple, which can be eliminated using a 
counting period multiple of 16.6 ms.  
 
 
Figure 3 - Frequency spectrogram of a 
vibrating-string signal. The P value 
yields a 10-Hz/fringe sensitivity. The 
frequency modulation, at 16.6-ms 
pitch, is explained by an electronic 
disturbance coming from the 60-Hz 
system frequency. 

 
The phase and frequency spectrograms are also good tools for revealing slight 

changes in the frequency of the free damping response of excited modes [14,15]. 
Figure 4 illustrates a result obtained for a metallic cantilever beam with a small crack 
in it. Soon after the mechanical impact, a short-time frequency drift appears.  This 
drift corresponds to the transition between two vibration states: that where the 
displacement has enough amplitude to fully open the crack and that where the crack 
remains closed. On the phase spectrogram, the cursor sets the time reference slice mr 
close after the impact end in order to shown six fringes, or cycles, in 250 ms: a 24-Hz 
frequency drift. Other case studies are available in [16]. 
 

 
Figure 4 - Phase spectrogram (left) and frequency spectrogram (right) of the free response of 
a 6.2% surface ratio cracked beam excited by a 2kN mechanical impact. ( fs=25.6 ks/s)  
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CONCLUSIONS 

Phase spectrogram and frequency spectrograms make the information contained in 
the phase of the STFT useful.  The phase information presented in the time-frequency 
plane can be applied for accurate diagnostic purposes.  Fringe patterns can be seen 
allowing us to distinguish between weak frequency modulation and an amplitude 
modulation.  The capacity to distinguish these modulations in the visual interpretation 
opens the way to new diagnostic approaches. The LabView™ code and runtime are 
available on request. 
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