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Abstract 
Acoustic holography uses Kirchhoff-Helmholtz integral equation and Green’s function which 
satisfies Dirichlet boundary condition. Applications of acoustic holography mainly have been 
taken to the sound field neglecting the effect of flow. The existence of the uniform flow, 
however, changes sound field, the governing equation, and associated Green’s function. Thus 
the conventional method of acoustic holography should be changed for the sound field in 
which the effect of flow cannot be neglected. In this research, one possibility to apply acoustic 
holography to the sound field with uniform flow is introduced. Green’s function that copes 
with the effect of uniform flow is introduced. One easy way to find this will be explained for 
plane wave with uniform flow in a duct. This method can be also expanded to two dimensional 
sound field, which is verified by numerical computation.  

INTRODUCTION 

Acoustic holography[1~2], which predicts sound field by using acoustic pressure at the 
boundary surface, essentially assumes sound field to be coherent. That is, coherence 
between measurement points should be close to 1. Otherwise, the prediction results of 
sound field may differ from the correct sound field which we want to have. There are 
several cases in which sound field is poorly coherent, for example, sound field due to 
multiple incoherent sources, and the case that measurement noise is not negligible, and 
so on. Nam and Kim[3] showed that the error due to low coherence can be reduced by 
using multiple reference microphones. Especially, this theory can be applicable to the 
sound field accompanied by flow since this causes measured signals to be poorly 
coherent[4]. In this case, however, another problem is that the air flow changes the 
whole sound field governed by wave equation[5]. Since acoustic holography uses wave 
equation and Green’s function satisfying homogeneous Dirichlet boundary condition[6]  
on the assumption that the effect of flow is negligible, general approach itself should be 
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changed. To overcome this, there have been researches on sound field prediction with 
uniform flow for two and three dimensional sound fields[7~8]. In these researches, 
boundary integral formulation was derived by using convective wave equation. 
Green’s function used in those researches, however, does not satisfy homogeneous 
Dirichlet boundary condition, which makes it difficult to predict sound field by using 
only acoustic pressure at boundary surfaces. Recently, Ruhala and Swanson[9] tried to 
develop one method of acoustic holography in uniform flow. They mainly dealt with 
change of Green’s function and filter in wave number domain directly, which doesn’t 
provide the tangible physical meaning. 

For the easy understanding of acoustic holography in uniform medium, the 
process how Green’s function satisfying homogeneous Dirichlet boundary condition 
can be found should be accompanied mathematically and physically. For this, we start 
with plane wave sound field in a duct with uniform flow. 

EXPRESSION OF ONE DIMENSIONAL SOUND FIELD WITH 
UNIFORM FLOW 

Convective wave equation 

Since Green’s function is driven from the wave equation, the convective wave equation, 
which is the wave equation in consideration with uniform flow, should be introduced. 
The whole process to derive convective wave equation is based on reference [5], which 
says,  
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where ),( txp  represents sound pressure at position x  and time t , c  the wave speed 
when there is no flow and U the mean flow speed. Note that equation (1) becomes the 
conventional wave equation when 0=U . If we assume simple harmonic motion, i.e., 

tjexPtxp ω−= )(),( , and define a dimensionless factor cUM /= , eq. (2) can be 
rewritten as 
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where k  means wave number. Note that we are dealing with the subsonic case and 
incompressible flow[10], that is, .3.00 <≤ M  

One dimensional Green’s function 

To derive Green’s function with uniform flow, consider that there exists an impulsive 
excitation at 0xx = : 
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Any kinds of solution satisfying eq. (3) can be Green’s function. Integrating eq. (3) and 
assuming the form of Green’s function gives one solution: 
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Figure 1 shows the shape of Green’s function w.r.t. position. The dotted line shows 
Green’s function when 0=M , the solid line when 2.0=M . As shown in figure, the 
wavelength can be changed w.r.t. direction and magnitude of uniform flow. When the 
direction of propagation is the same with that of uniform flow, wave propagates farther 
with flow than wave without flow. Otherwise, the reverse phenomenon occurs. 
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Figure 1- one dimensional Green’s function in a duct with uniform flow, where M  means 

Mach number, 0x  the excitation point, λ  the  wavelength  without flow. 

ONE WAY TO FIND GREEN’S FUNCTION SATISFYING 
HOMOGENEOUS DIRICHLET BOUNDARY CONDITION 

One dimensional Kirchhoff-Helmholtz integral equation 

Using Green’s function satisfying eq. (3) and using eq. (2), we can get the following 
form: 
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where independent variables such as 0, xx  are temporarily omitted for simplicity. By 
utilizing one integral technique in reference [11], and neglecting sound pressure when 
x  goes to infinity, we can get the following form for the region ],0[ ∞ : 

0

)(
1
2

0
02

0
02)()|()|()()1()(

=

−
−





 −−=

x

xx
M
Mkj

e
dx

xdPxxG
dx

xxdGxPMxP . (6) 



J. -H. Jeon and Y. -H. Kim 

Eq. (14) says that acoustic pressure at 0xx =  can be predicted using pressure and 
gradient of pressure, and Green’s function satisfying eq. (4) at 0=x . 

Green’s function which satisfies homogeneous Dirichlet boundary condition 

In many cases of acoustic measurement problem, it is easier to measure sound pressure 
than gradient of sound pressure. Hence, it is recommended to use Green’s function 
which becomes zero at 0=x , which does not need the information on gradient of 
sound pressure. When there is no flow, such Green’s function can be found just by 
putting impulsive excitation at 0xx −=  with opposite phase to Green’s function in eq. 
(4), that is,  

)|()|()|( 000 xxGxxGxxGD −−= [12],  (7) 
where the subscript D denotes homogeneous Dirichlet boundary condition. This simple 
method can’t be applied to the case when mean flow exists, since the wavelengths of 
left going wave and right going wave differ each other. Figure 2(a) shows this 
phenomenon graphically. 
One simple way to make )|( 0xxGD  is to change the excitation position of )|( 0xxG −  
into some other value in consideration with its changed wavelength. This is possible 
since )|( 0xxG −  is homogeneous solution of eq. (3). Since the ratio between 
wavelength of left and right going wave is )1/()1( MM −+ , we can change 0xx −=  

into 01
1 x

M
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−
+

−= , that is,  
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which is Green’s function satisfying homogeneous Dirichlet boundary condition 
considering the effect of uniform flow. Using this function, we can make Green’s  
function zero at 0=x  even if there is uniform flow (see figure 2(b)). 
 Substituting eq. (4), (8) into eq. (6), we can get the acoustic pressure at 0xx = : 

01
0 )0()(

x
M

kj
ePxP += .  (9) 

Since there is no acoustic source within the region ],0[ ∞ , only right going wave 
propagates within this region with the wave number )1/( Mk + , which gives a clear 
explanation on the result of eq. (9) physically. Through this, we can see that the 
proposed Green’s function can be applied to the one dimensional sound field. 
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Figure 2- Graphical expression of )|( 0xxG , )|( 0xxG − , and (a) )|( 0xxGD , and (b) 

)|( 0
' xxGD  when 2.0=M . The solid line means )|( 0xxG , and the dotted line 

)|( 0xxG − and )
1
1|( 0x

M
MxG

−
+

−  in  upper figures, and the lower figures show )|( 0xxGD  

and )|( 0
' xxGD  each. 

Application to the two or three dimensional sound field 

For more general and applicable case, two or three dimensional sound field, the above 
way to find Green’s function can be applied. See figure 3, which depicts three 
dimensional sound field due to sources within the region 0<x  when uniform flow 
exists along the x-axis. Sound pressure when x  or y  go to infinity is assumed to be 
zero, which enables to apply Sommerfeld radiation condition[13]. In this case, sound 
pressure at arbitrary point on the surface 0xx =  is determined by integrating sound 
pressure at 0=x . In this case, Green’s function can be written as ),,|,,( 000 zyxzyxG , 
which means sound pressure at ),,( zyx  when there exists a monopole source at 

),,( 000 zyx . Using this, Green’s function satisfying homogeneous Dirichlet boundary 
condition can be written as 
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At the second term of right hand side in eq. (10), 
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 and 0x−  plays a role 
controlling phase which enables ),,|,,( 000

' zyxzyxGD  to become zero at 0=x . For 
the explicit form of  ),,|,,( 000 zyxzyxG  and two or three dimensional 
Kirchhoff-Helmholtz integral equation with uniform flow, see reference [7] and [8]. 
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Figure 3- Three dimensional sound field due to sound sources within the region 0<x  

 

NUMERICAL COMPUTATION  

To verify the applicability of the proposed Green’s function, numerical 
simulation for the two dimensional sound field is conducted for the two dimensional 
sound field generated by monopole source. The measurement line, where the 
measurement point lies, is Hx  apart from the prediction line where the monopole 
source lies. The distance between measurement points is d , and the aperture length is 
L . Since this paper deals mainly with the applicability of sound prediction method to 
the sound field where uniform flow cannot be neglected, the prediction results w. r. t. 
the variation of uniform flow is observed and compared with the exact solution. Also 
the prediction results are compared with those by using the conventional method.  
 

xM

Measurement
line

y

Monopole
Source

Prediction 
line

Hx

d

L
xM

Measurement
line

y

Monopole
Source

Prediction 
line

Hx

d

L

 
 

Figure 4- Illustration of variables for numerical computation. d  means the distance between 
adjacent measurement points, L  the aperture size, Hx  the distance between measurement line 

and prediction line. 
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Figure 5 shows the computation results compared with the conventional method and 
the exact solution.  
Prediction results shows that when 0=M , the three results matches well except for the 
point at 0=y , which seems to be a strong singular point near the monopole source. As 
the flow speed increases, results using the conventional methods go further from the 
exact solution. Results using the proposed Green’s function, on the other hand, match 
well regardless of the flow speed. 

 
(a)          (b) 

 
(c)          (d) 

Figure 5- Numerical computation results for λλλ 6,6/,34.0 === Ldm , mxH 1.0=  and 
(a) 0=M , (b) 1.0=M , (c) 2.0=M , and (d) 3.0=M . The solid line depicts the exact 

solution, circles mean prediction by using the proposed Green’s function, x marks mean 
prediction by using the conventional method. 

SUMMARY 

We have derived the sound field prediction process by obtaining Green’s function 
satisfying homogeneous Dirichlet boundary condition when there exists uniform flow. 
The idea to obtain such Green’s function stems from one dimensional sound field, 
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which easily explains how to change Green’s function compared with the conventional 
method in which the effect of flow is neglected. Using these, we have shown that the 
sound field can be predicted without knowing the gradient of boundary pressure with 
uniform flow. Computation results for the two dimensional sound field also show the 
applicability of this idea to the sound field with uniform flow. 
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