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Abstract 
For a better understanding of the nonlinear ultrasound interactions with biological media, an 
analysis based on Goldberg’s number is elaborated in order to estimate the amplitude of the 
generated harmonics in the case of a finite amplitude plane wave that propagates in a 
dissipative liquid. 

INTRODUCTION 

Krassilnikov’s experimental works show a close dependence of the absorption 
coefficient with the intensity [1,2]. Because of the mathematical formulation 
complexity, most authors do not take into account this dependence in their numerical 
modeling. 

In this study, the absorption coefficient dependence versus the intensity is taken 
into account. An analysis on the validity domain of the fundamental and the second 
harmonic analytical expressions established on the quasi-linear approximation is 
elaborated while being based only on Goldberg’s number. Moreover, an error 
analysis is made to consider the deviations resulting from the quasi-linear 
approximation as compared to the numerical solution of Burgers’s equation. This 
investigation is based on Krassilnikov’s experimental data [2], which have been 
chosen for their precision. These experimental data concern water and glycerin that 
corresponds respectively to a weakly dissipative liquid approaching the urine or 
amniotic fluid characteristics and a strongly dissipative liquid having some 
similarities with soft tissues [3]. According to this investigation, the analytical 
expressions of the fundamental and the second harmonic analytical expressions 
established on the quasi-linear approximation can constitute a good approximation of 
the numerical solution of Burgers’ equation for a medium characterized by a 
Goldberg number very low as compared to the unity, otherwise the analytical 
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expressions of the fundamental and the second harmonic already established on the 
quasi-linear approximation are not checked and must be redefined. 

It should be noted that in this study, all the derivations were entirely developed 
in the frequency domain in order to reduce the consuming computing time. 

THEORY 

The nonlinear equation for plane waves in a homogeneous dissipative medium is 
Burgers’ equation, given in dimensionless variables as [ 4, 5, 6]: 
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where 0czt −=τ  is the retarded time. 
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Mk  is the Goldberg number; where k, M, β and α are respectively the wave 

number, the Mach number, the nonlinearity acoustic parameter and the absorption 
coefficient. 

The Goldberg number Γ [7,8] represents the ratio of attenuation length al  ( the 
inverse of the absorption coefficient α and corresponds to the beginning of the old 
age region) to the shock distance sl  at which the waveform would shock if absorption 
phenomena were absent. The dimensionless parameter Γ measures the relative 
importance of the nonlinear and dissipative phenomena. Its value provides an 
indication of the nonlinearity when compared to the unity. Indeed, the nonlinearity 
and the dissipation are two phenomena in perpetual competition and Goldberg’s 
number is a reliable indicator for any analysis including these two phenomena. An 
analysis based on Goldberg’s number is important since it is an essential step for 
solving general problems involving ultrasound waves of finite amplitude. 

The first term on the right hand side of Eq. (1) is a nonlinear term that accounts 
for quadratic nonlinearity producing cumulative effects in progressive plane wave 
propagation. 

Nonlinear propagation in dissipative liquids is considered by using Fourier 
series expansion. By assuming that the solution of Eq. (1) is periodic in time with 

period 
0

2
ω
π , the solution can be written as the sum of the fundamental and the 
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generated harmonics [9,10]. The dimensionless amplitude of the nth harmonic at the 
dimensionless position σ∆+σ  in terms of all harmonics at the preceding 
dimensionless position σ  is given by: 
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The first summation term on the right hand side of Eq. (2) represents the 
contribution of the lower order harmonics to the nth harmonic, while the second  is 
associated with the contribution of the higher order harmonics. According to the sign 
of each contribution the nth harmonic energy can be enhanced or decreased. 

Eq. (2) allows to determine the amplitude of the nth harmonic at the position 
σ∆+σ  in terms of all harmonics at the preceding spatial position σ . 
This derivation requires an appropriate truncation of the finite series on the 

right hand side of Eq. (2), to insure a negligibly small error in the highest harmonic of 
interest and to maintain some acceptable accuracy [ 11, 12, 13, 14]. 

In the hypothesis of the quasi-linear approximation, all the harmonics of higher 
order than two can be neglected in the numerical solution of Burgers’ equation. The 
experimental determination of the acoustic nonlinearity parameter β, by the finite 
amplitude method, is based on pressure measurements of the distortion of a finite 
amplitude wave during its propagation where the growth of the second harmonic 
pressure amplitude with the distance is determined. For more convenience, it is 
suitable to establish the analytical expressions of the fundamental pressure and the 
second harmonic pressure. In terms of the dimensionless notation, the acoustic 
pressure of the fundamental and the second harmonic component can be expressed as: 

σα−=σ sl1
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where 0P  is the characteristic pressure amplitude (the value of the fundamental at the 
point σ=0). 
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where 2
01 fα=α and 1

2
02 4f4 α=α=α  denote respectively the attenuation 

coefficients for the fundamental and the second harmonic amplitudes. 
In case of 1l)2( s12 <<σα−α , Eq. (4) becomes: 
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NUMERICAL RESULTS 

In order to determine the validity domain of the fundamental and the second 
harmonic analytical expressions established in the quasi-linear approximation two 
analysis have been made, one for water and the other for glycerin, by exploiting 
Krassilnikov’s experimental results. Table 1 lists material properties. 

Parameters Density 
ρ0(kg/m3) 

 

The sound velocity 
C0(m/s) 

 

The nonlinearity acoustic 
parameter β 

 
Water 998 1481 3.48 

Glycerin 1260 1980 5.4 
Table 1: Material properties. 

The experimental data show that the increase of absorption with an increase in 
intensity going from 0.3 W/cm2 up to 4.7 W/cm2 is connected to the change of the 
ultrasonic wave shape of finite amplitude [2]. 

All simulations were made with intensities of 0.3-4.7 W/cm2, which correspond 
to breast lesion diagnosis [15] (Figure 1). Initially, the ultrasonic wave is taken to be 
purely sinusoidal with a frequency of 2MHz in the two considered media. Only the 
fundamental wave exists at the starting point 0=σ , and the other harmonic modes 
are generated as the wave propagates from the source. A number of 40 harmonics was 
retained to simulate the numerical solution of Burgers’ equation which has been 
considered, in the error derivation, as an exact solution. 

For a better representation and interpretation of the several graphs, a symbol 
with a defined shape and type is inserted all the 4096 samples on the graphic layout of 
the analyzed functions which have been simulated on 215  samples. 
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Figure 1: Goldberg numbers for water and glycerin with intensities of 0.3-4.7 W/cm2 and an 

insonation frequency of 2 MHz. 
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Figure 2: Relative error of the fundamental analytical solution compared to the numerical 

solution of Burgers’ equation versus the σ coordinate: case of water. 

Water can generate extreme waveform distortion when compared to glycerin, as 
indicated by Goldberg’s number for water, which is 200 times larger than that of 
glycerin for an intensity of 0.2W/cm2 and about 10 times larger than that of glycerin 
for an intensity of 4W/cm2 (Figure 1). 

The relative error derivation of the analytical solutions as compared to the 
numerical solution of Burgers’ equation is carried out in the following way (Eq. (6)): 

100
urgers)solution(Bexact 

urgers)solution(Bexact  -solution analytical 
(%)Error ×=    (6) 

The relative error, on the selected range, of the fundamental analytical solution 
(Eq. (3)) as compared to the numerical solution of Burgers’ equation is less than 4% 
for glycerin (Figure 4). As for water, this error is about 12% (Figure 2). 
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Figure 3: Relative error of the analytical solution of the second harmonic respectively to the 

approximated second harmonic compared to the numerical solution of Burgers’ equation 
versus the σ coordinate: case of water. 
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Figure 4: Relative error of the fundamental analytical solution compared to the numerical 

solution of Burgers’ equation versus the σ coordinate: case of glycerin. 

In the case of water the relative error, on the selected range, of the 
approximated second harmonic analytical solution (Eq. (5)) as compared to the 
numerical solution of Burgers’ equation is about 40% for an intensity of 0.34W/cm2 
(Figure 3). 

For glycerin, the relative error of the second harmonic analytical solution      
Eq. (4) as compared to the numerical solution of Burgers’ equation is much weaker 
than that resulting from Eq. (5) (Figure 5). As an example, for σ≈0.1 the error 
obtained from Eq. (4) is lower than 1%, and that produced by Eq. (5) can reach the 
40% (Figure 5). 

According to this study, the analytical solutions are all the more valid since the 
measurement is made near the source. In addition, the precision and the choice of the 
analytical expressions depend essentially on the analyzed medium and on the 
intensity of excitation I0. 

Moreover for glycerin and with intensity going from 0.3W/cm2 up to 4.7W/cm2, 
the fundamental and second harmonic expressions (Eq. (3) and Eq. (4)) can constitute 
a good approximation of the numerical solution of Burgers’ equation. 
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Figure 5: Relative error of the analytical solution of the second harmonic respectively to the 

approximated second harmonic compared to the numerical solution of Burgers’ equation 
versus the σ coordinate: case of glycerin. 
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As for water, the analytical expressions used present deviations when compared 
to the numerical solution of Burgers’ equation. 

Indeed, Eq. (3) assumes that the fundamental amplitude variation versus the 
spatial coordinate is only proportional to the product of the absorption coefficient by 
the fundamental amplitude and that the absorption coefficient is not dependent on the 
intensity (Eq. (3)), while these hypothesis are not always checked. 

CONCLUSION 

The validity domain of the fundamental and the second harmonic analytical 
expressions established on the quasi-linear approximation can be preset while being 
based only on the derivation of Goldberg’s number. 

Indeed according to this study, the analytical expressions of the fundamental 
and the second harmonic established on the quasi-linear approximation can constitute 
a good approximation of the numerical solution of Burgers’ equation for a medium 
characterized by a Goldberg number very low as compared to the unity (strongly 
dissipative). On the other hand for a medium characterized by a Goldberg number 
very large as compared to the unity, the analytical expressions of the fundamental and 
the second harmonic already established on the quasi-linear approximation are not 
checked and must be redefined. 

A new mathematical formulation of the fundamental and second harmonic for a 
medium characterized by a Goldberg number large as compared to the unity will be 
the subject of a forthcoming study. 
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