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Abstract

In the present paper the concept of dynamic shape control is applietnpensate disturb-
ing flexural vibrations in a cantilever beam. The idea of dynamic shapeatostused to
eliminate flexural vibrations, which arise due and in addition to a given stippation. For
feedback control a collocated actuator and sensor design is profgdsedontinuous distri-
bution, derived from the method of dynamic shape control, is approximatadibite number
of piezoelectric patches. The controller itself is incorporated into our fitet@ent software
tool, which allows the full simulation of controlled piezoelectric structures.

INTRODUCTION

In many engineering applications vibrations are responsible for the @féref acoustic
noise. Especially slender or thin-walled structures with a large surfatdeilmate to this un-
wanted radiation. In the present paper the concept of dynamic shap®lds applied to
compensate the emerging disturbing vibrations. The goal of shape cantwleliminate
structural deformations by means of a distributed control actuation. Thesspatial dis-
tribution of the actuation, together with its time evolution, is prescribed, suchtlibabtal
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displacement field vanishes throughout the entire structure. The basitsiderived for the
case of a slender cantilever. For corresponding studies on beantiosilstasee e.g. Irschik,
Krommer and Pichler [1], and for an application to plate vibrations, seeNad@g. [2]. Due
to the prescribed support motion, flexural vibrations are emerging in addiitithe rigid body
motion. A continuous distribution for the piezoelectric actuation is derivetyacaly, which
is able to eliminate the flexural vibrations of the beam. For practical feasibilitygaghg&nuous
actuation is approximated by distributed piezoelectric patches. The afgteojpcations for
the actuators as well as for the sensors are determined by finite elementtatons. A PD-
controller using collocated actuators and sensors is designed and sinwititiecthe envi-
ronment of MATLAB/Simulink. The performance of the controller is evaludigépplying
our finite element software tool, which allows the full simulation of controlled qeézctric
structures.

DYNAMIC SHAPE CONTROL

We study a slender cantilever beam of lengtlwvith a span-wise constant bending stiffness
D and a span-wise constant linear ineftiaAt x = 0 the slope is prescribed zero, but a
support motionw(t) is imposed. Atx = L homogenous dynamical boundary conditions are
prescribed. Along the span of the beam no transverse forces dredafyut we consider an
arbitrarily distributed eigenstrain-type momeht*(x,t) be applicable. We decompose the
total deflection of the beam into two parts accordinguig(z,t) = w(t) + Aw(x,t), in
which Aw(x, t) characterizes the deviation of the total deflection from the rigid body motion,
which follows the time variation of the support motion. The governing equatarikis latter
deviation of the deflection are

DAW gze (2, 1) + pAii(z,t) = — [pw(t) + M, (z,1)] ,

r=0: Aw=0 and Aw, =0,

r=L: DAwg,+M*"=0 and DAw gz + M, =0, Q)
see e.g. Ziegler [3]. From Ed./(1) we establish an equation for the teat#rthat part of the

kinetic energy that is solely due to the deviation of the deflection from theosuippotion.
This balance equation reads

L
g L /,quAwdx + = /DAw ea AW gpda | =
dt |2
L
/ L + M7, Awdx + M7 (L)Aw(L) — M*(L)Aw (L) . 2
0

Provided the deviation of the deflection has homogenous initial conditionsthibdeft hand
side of Eq./(2) is zero for the initial time. If we are further able to ensureighe hand side of
Eqg. (2) vanishes for all times, then the deviation of the deflection vanistiemthe whole
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beam for all times. An exact solution to this problem, which is denoted as dyrsrajme
control problem in the literature, is:

M*(x,t) = S(x)u(t)
with u(t) = —pw(t) andS . =1, z=1L: S, =0andS =0. (3)

For a review on the method of shape control, see Irschik [4]. The solafigug. (3) requires
the time variation of the support motion to be known. In general this will notase cThen
one needs to use methods of feedback control. The eigenstrain-type tisospan-wise dis-
tribution S(x), the so-called shape function, can still be calculated from/Eq. (3), buirtte
variationu(t) should be provided be a controller, which is fed by a sensor signal. g¥etse
design a sensor, which is collocated to the eigenstrain-type moment, heneeatttuhtion.
The power of this latter actuation with respect to the deviation of the defle@dimbe written
as, see Eq. (2),

L
7@ _ _ / M* A gpdz = —u(t) [ S(a) At gpdz = u(t)j(t). 4)
0

T —

=—y(t)
The sensor signaj(t) defined in Eq.[(4) is the so-called natural output of the system, see
Nijmeijer and van der Schatft [5], and it measures a weighted average otithature of the
total deflection, because the curvature of the support motion is identicatly Aee weighing
function is identical to the span-wise distribution of the actuation and, thesedatuation
and sensing are collocated. We construct a closed loop system by exgmmg a PD-
controller,u(t) = —Py(t) — Dy(t). For the free closed loop system we find the following
statement from Eq. (2):

L L

d |1 1 1
=13 / pAi i+ / DA e Aw sz + 3 Py(ty(t) | = ~Di(0)i(t).  (5)
0 0

Although Eg. [(5) does not proof the stability of the closed loop system inghsesof Lia-
punov, but we consider it to be sufficient for establishing stability in thigpdgor a proof of
the stability of a cantilever with piezoelectric actuation and sensing, see Buanfl Kugi et
al. [7]. A detailed discussion on the design of collocated actuators asdisgior beams with
application to the feedback control of sub-sections of beams can bd folkrommer and
Nader [8]. In this section we shortly introduced the idea of dynamic shamtea to eliminate
flexural vibrations of a cantilever, which arise due and in addition to anggugport motion.
If the time variation of the support motion is known an exact elimination can bieathby
the method of dynamic shape control. If the time variation is unknown, dynampestontrol
is still a useful tool, as it allows us to design collocated actuators and semgdch can be
used in feedback control to control the deviation of the deflection. Ingkegections we will
present analytical and numerical results, which show the power of tpoped method for
the control of flexural vibrations superposed upon rigid body motioegalsupport motions.
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SIMULATION OF THE DISCRETIZED ACTUATION

The continuous shape function of the eigenstrain-type moment accordiup (8) is approx-
imated by means of a discrete piezoelectric patch actuation. The requiredtaofi@lectric
voltage and the spatial distribution of the discrete patches are determinedliagcto the
equal-area rule; i.e. it is chosen such that the area under the discrietimdibn matches
the area under the continuous distribution in Eq. (3). In the presenstadyg and from the
experiences gained in Ref. [9], ten patches are used, where the posifithe patches are
determined by the formula

k
Lpatch = L(l - 5)1.45' (6)

In Eq. (6),n = 10 is the total number of the patches ahis the number of the patch under
consideration. The middle layer of the beam is made of aluminum, with a Iéngtls00 mm,
width b = 40 mm and thickness, = 4 mm, Young’s modulug, = 50-10° N/m?, Poisson’s
ratior, = 0.34 and mass density, = 2700 kg/m’. The two actuator layers are made of PZT-
5A, each with a thickness @35 mm. For the simulation the orthotropic material properties
of PZT-5A are used, comprising a complianceshf = 16.4 - 10~ 2 m/N?, a piezoelectric
coefficientds; = —171pC/N and a density, = 7750kg/m?. The effective mass per unit
length is given by = 0.649 kg/m and the bending stiffneds results ta18.76 Nm?.
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z (m)

Figure 1: Shape function - dashed line: continuous. solid line: discretized.

Figure 1 shows the continuous and the discrete normalized shape furtions 2/L2S(x)
andSd(x) = 2/L25%(x). The area under the discrete electrode patches is chosen as equal to
the area under the continuous shape function, not only in total, but alparffital areas.

For the purpose of simulation we have to approximate the infinite dimensioriahsys
by a finite dimensional one. Thus we expand the deflection into the eigditiunof the
cantilever

Aw(z, t) =Y W (z)q(t). (7)
=1

For the simulation, using the environment of MATLAB/Simulink, we use the sipdees
representation

FIIRN Y RO RO PR
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in which d = pa is the disturbance. The diagonal mass maMix the diagonal stiffness
matrix K, the shape function vecterand the disturbance vectprare defined by

L L
M = u/WWde —uE, K= D/W”W”de = D diag(\}),
0 0

L L
s = —/W”dea:, p= —/de. 9)
0 0

In the closed-loop simulation the parametéts= 100 and D = 0.6 are used for the PD-
controller. Figuré 2 represents two results far0&*-order model, showing the good perfor-
mance of the vibration compensation under consideration.
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Figure 2: Step response and transient solution (excitation frequenc.aHz).

FINITE ELEMENT COMPUTATIONS

The piezoelectric transducing mechanism is based on the interaction bettveeetectric
guantities, electric field intensifig and electric inductio®, with the mechanical quantities,
mechanical stress tensfar] and strain tensojS]. By applying a mechanical load (force) to
a piezoelectric transducer (e.g., piezoelectric material with top and bottortnoelel; one
can measure an electric voltage between the two electrodes (senstr &fiecmechanism

is called thedirect piezoelectric effecand is due to a change in the electric polarization of
the material. The so-calledverse piezoelectric effeis obtained by loading a piezoelectric
transducer with an electric voltage. Therewith, the transducer will shovhamécal deforma-
tions (actuator effect), and the setup can be used, e.g., in a positiontegisyi$re material
law describing the piezoelectric effect is given by

o = [cFIS—[e]E, (10)
D = [e]S+[”]E. (11)

Since the stress tensfer] as well as strain tens@8] are symmetric, it is convenient to write
them as vectors of six components (the three normal and the three shgaorents) using
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Voigt notationand denote them by andS [10]. The material tensorg”], [ ©], and[e]
appearing in Eq! (10) and Eq. (11) are the tensor of elastic modulugletttic constants,
and of piezoelectric moduli, respectively. The superscriptand S indicate that the corre-
sponding material parameters have to be determined at constant electiictéakity E and

at constant mechanical stra) respectively. For deriving the coupled PDEs for piezoelec-
tricity, we start at the local form of balance of linear momentum

fv + Blo= pu, (12)

describing the mechanical field. In EQ. (1) denotes any mechanical volume forpethe
density,u the mechanical displacement afida differential operator, which computes as
follows

) a o \T
d ) f)
a a 9
0 9: oy oz Y

Expressingr by Eq. (10) and in-cooperating the strain—displacement relation
S = Bu (14)

results in
pit — BT ([c”]Bu — [e]"E) = fy . (15)

Since piezoelectric materials are insulating, i.e., do not contain free-voluanges) and we
do not have to consider any magnetic field, the electric field is determined by

V-D=0andV xE=0. (16)

According to Eq./(16) we can express the electric field interBiby the gradient of the scalar
electric potentiaV,

E=-VV.=-BV, with B=(8/0z, d/dy, /dz)". (17)
By combining these results with Eq. (11) we obtain
BT ([e]Bu - [ES]BV;) ~0. (18)
Therefore, the describing partial differential equations for linearqakctricity read as
pit — BT ([CE]Bu + [e]T[S’Ve> = fy, (19)
BT ([e]Bu e S]Bv;) = 0. (20)

Applying the Finite-Element-Method (FEM) as described e.g. in [11], wigeaat the follow-
ing semidiscrete Galerkin formulation

o) (e )+ (5 o) ()
(e S ) () =(%) (21)
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In Eq. (21)M,, denotes the mechanical mass matky, the mechanical stiffness matrik
the electric stiffness matrid<, - the coupling matrix andy the nodal mechanical forces.
In addition, we have introduced the mechanical damping mé&tgxwhich we compute ac-
cording to Rayleigh’s damping model (see e.qg./[12]). The time discretizatiperiermed
by applying the implicit Newmark scheme as described in [12]. The abowided scheme
is implemented in the simulation to@FS++ [13], which is an enhanced Finite-Element-
program for coupled field problems. The software allows a steering witls¢Fipts, so that
the Tcl-script has access to all simulation results as well as can set bgwodadlition, loads,
etc. Therewith, the controller-structure is implemented in a Tcl-script, whiehsstee whole
simulation. For a detailed description of digital controller design see e.g.cBadsfer and
Schlacher [14].

The whole structure has been discretized by 396 hexahedral finite d¢kenaenlting
in a total number of 8.608 unknowns. We have chosen second order figriterms in or-
der to avoid the well known locking effect in thin structures. The wholecttine is excited
by applying a prescribed movement of the left end of the beam with an ampbfuldieum
and a frequency of2 Hz, which corresponds to the first eigenfrequency. In order to test
the performance of our controller, we have performed a transientsisaBigure 3 displays
the tip displacement of the beam, once without the controller (piezoelectriatactibeing
hot-wired) and once with the controller. Within the controller we have limited theimmax
control voltage td V.
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Figure 3: Tip displacement of the beam with and without the controller.

ACKNOWLEDGMENTS

The present paper is a contribution to the Linz Center of Competence indttenlts (LCM).
Support of this center in the framework of the Austrian K+ Science Fundaitefylly ac-
knowledged. The authors are grateful to Professor Hans Meixriehingroup, Siemens
Zentrale Technik NAinchen, for initiating this work, and for participating in the LCM.



M. Nader, M. Kaltenbacher, M. Krommer, H.-G. v. Garssen, &ch

References

[1]

2]

[3]

[4]

[5]

H. Irschik, M. Krommer, U. PichleDynamic shape control of beam-type structures by
piezoelectric actuation and sensijrigternational Journal of Applied Electromagnetics
and Mechanics, 17, (2003), 251-258.

M. Nader, H. Gattringer, M. Krommer, H. Irschil§hape control of flexural vibrations
of circular plates by shaped piezoelectric actuatidaurnal of Vibration and Acoustics,
125(1), (2003), 88—94.

F. Ziegler,Mechanics of Solids and Fluid&nd english edition, 2nd corrected printing,
Springer, New York (1998).

H. Irschik, A review on static and dynamic shape control of structures by piezoelectr
actuation Journal of Engineering Structures, 24, (2002), 5-11.

H. Nijmeijer, A. J. van der SchaftNonlinear Dynamical Control Systen&pringer, New
York (1991).

[6] A. Kugi, Non-linear Control Based on Physical ModelSpringer-Verlag, London

(2001).

[7] A. Kugi, D. Thull, K. Kuhnen,An infinite-dimensional control concept for piezoelec-

[8]

[9]

[10]

[11]

[12]
[13]

[14]

tric structures with complex hysteresia print (available online): Journal of Structural
Control and Health Monitoring.

M. Krommer, M. Nader,Collocated actuator / sensor design fo shape control of sub-
regions of structuresin R. C. Smith, ed.Proceedings of SPIEs 11th Annual Interna-
tional Symposium on Smart Structures and Materials: Modeling, SignaeB=ing, and
Control, vol. 5383, San Diego, USA (2004), pp. 232 — 243.

M. Nader, H.-G. v. Garf3en, H. Irschik/ibration compensation of slender beams and
thin shell structures by distributed piezoelectric patchies R. Flesch, H. Irschik,
M. Krommer, eds.Schriftenreihe der Technischen UniveasitVien, Proceedings of the
Third European Conference on Structural Control (3ECS). Il, Technische Univer-
sitat Wien, Vienna, Austria (2004), pp. S1-155 — S1-158.

T. Belytschko, W. K. Lui, B. MoranNonlinear Finite Elements for Continua and Struc-
tures Wiley (2000).

M. KaltenbacheriNumerical Simulation of Mechatronic Sensors and Actua®psinger
Berlin-Heidelberg-New York (2004).

T. J. R. HughesThe Finite Element MethodPrentice-Hall, New Jersey (1987).

M. Kaltenbacher, A. Hauck, M. Mohr, E. Zhelezir@-S++: Coupled Field Simulation
LSE, University of Erlangen (2005).

F. Gausch, A. Hofer, K. Schlachdjgitale RegelkreiseOldenburgverlag (1993).



