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Abstract 
The paper deals with kinematically excited single DOF oscillatory system, incorporating both 
viscous and dry-friction vibration damping. By simulation their influence on system 
properties will be analysed. Two approaches will be treated ’  one using the signum function 
approximation, the second one using switching between slipping and sticking states. Both 
models, exposed to random excitation, will be compared to a SDOF system without friction. 

INTRODUCTION 

Dry friction is omnipresent in mechanical systems and concern of scientific research 
for centuries [1, 4]. The first scientific work on this issue is attributed to Coulomb in 
1785, however Leonardo da Vinci“s genius tackled this problem long before [4]. 
Despite of long standing research the mathematical description of this phenomenon is 
not fully furnished and its simulation description is by no means simple. The 
phenomenon is not always reproducible, as its extent depends on surfaces state, 
surfaces lubrication, asperities, temperature, normal force magnitude, relative 
velocity, etc. [1, 2, 6, 10]. The first rigorous analytical treatment of this problem is 
attributed to Den Hartog, back in 1931 [3], whose work is still much coveted [5]. 
Various approaches to this problem are presented in the literature, e.g. [2, 9-13]:  
- static friction models [9, 11, 13],  
- dynamic friction models whose cater for time-delayed friction force and its 

hysteresis, as well as all the details of the surfaces contact mechanics. Some 
hitherto used models are the Dahl model; the LuGre model; the Leuven model; the 
Petrov - Ewins model [10]. All these dynamic models assume detailed knowledge 
of sliding surfaces parameters. They are mentioned for sake of completeness only. 
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Here the first approach will be followed. Basic mathematical description of 
Coulomb friction is by the relay function, or signum function: 

 
( )rfkf sign vFF = ,      (1) 

 
where Ff is the resulting friction force with varying direction, Ffk is the Coulomb 
friction force and vr is the relative velocity of the sliding surfaces. 
 
A/ Coulomb model involves a proportional dependence of the Coulomb friction 
force Ffk on the normal loading force FN [2, 9, 14], which is assumed to be constant: 
 

Nkfk FF µ= ,      (2) 
 
where – k is the kinetic friction coefficient given for various surfaces in the literature. 
 

 
Figure 1 —  Friction force Ff courses as function of the relative velocity vr 

 
The friction force at zero relative velocity cannot be determined, i.e. the friction 

force Ff for vr = 0 can have any value in the interval (’Ffk, +Ffk). Signum function is 
often [2, 6, 8, 11, 14] mathematically described as: 
 

( )
01
01

<−
>+

=
r

r
r for

for
sign

v
v

v .     (3) 

 
However, different authors define differently function value for argument value 
vr = 0. Note also that sign function, as defined by expression (3) has no limit for vr = 0 
and is neither differentiable for vr = 0, hence is not a ”neat„ continuous function. 
 
B/ In reality a larger force Ffs > Ffk is needed for overcoming the adhesion at zero 
relative velocity to start the sliding motion [2]. The friction force at vr = 0 has to be 
described as a function of a limit force FL, external to the dry-friction interface. 
The limit force FL is obtained by analysing the force balance across the sliding 
surfaces interface and has to be compared to the static friction force value Ffs:  
 

if FL ≤ Ffs ⇒ vr = 0.      (4) 
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If this condition is met the system is in standstill in the so-called stick state, 
indicated in Figure 1 by the red line segment. If at a certain time instant the adhesion 
force Ffs is overcomed by the external force FL the oscillatory systems starts abruptly 
to move and the relative velocity vr attains some non-zero value. Further on the 
Eq. (1) is valid until vr eventually decreases to zero and the system stops again. This 
start-sliding-stop movement (stick-slip movement) leads to non-unique solution of 
equations describing the motion and pose mathematical difficulties [6-8, 11, 14]. 
Analogically, the static friction coefficient – s is defined as – s = Ffs/FN; while – s > – k. 

 
C/ Stroke (relative displacement amplitude) xra limitations of any technical 
oscillator due to design constraints to a maximal value xrM have to be accounted for: 
 

 xra < xrM .                 (5) 
 

If at any time instant xra(t) ≥ xrM the structure is hard hit and impact phenomena 
with high acceleration peaks would occur, leading to possible chaotic behaviour. In 
practical systems measures are taken to avoid this situation and soften the end-stop 
impact, as described e.g. in [16]. In this paper the fulfilment of the constraint will be 
just checked without going into analysis of the end-stops influence. 

MODEL DESCRIPTION 

A horizontal oscillatory system, whose schematic layout is depicted in Figure 2, will 
be further analysed. The system will be subjected to kinematic excitation by 
displacement u(t) and its respective time derivatives. This is a so-called mixed-mode 
dissipative system [3], as both a linear viscous damper with damping coefficient b is 
present and the dry-friction force Ff is acting at the sliding surfaces interfaces.  
 

 
Figure 2 —  Schematic diagram of the analysed oscillatory system 

 
The equation of motion in the sliding mode is (xr = x ’  u is the relative displacement): 
 

( )[ ] 0sign rfkrrxdrx =+++=++ xFxbxkxmFxkxm &&&&&& ,          (6) 
 
where: Fd represents the mixed mode damping force, 

rr vx ≡&  is the relative velocity across sliding surfaces.  
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The exerted normal force FN is usually constant and equal to mass m weight, but FN 
may be time dependent, too. 
 

Following approaches to this system analysis and simulation can be used: 
1. Using signum function (Eq. (3)) or its continuous approximation [9, 10], while 

neglecting the vr = 0 state. 
2. Performing the force-balance analysis at vr = 0 and solving the respective 

describing equation in each system state (sticking or sliding) [11, 13]. 
 
1. In using the signum function after Eq. (3) the modified Eq. (6) is used, assuming 

non-zero relative velocity vr:  
 

( )[ ] umxFxbxkxm &&&&&& −=+++ rfkrrxr sign .    (7) 
 
For vr = 0 the sign function is set to zero. Analysis for vr = 0 is completely neglected. 
A ”smoothed„ continuous function is sometimes used instead [9, 10]:  
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Constant c in each of the functions describes the numerical ”match„ between 

the sign function and the continuous function used for approximation. In [9] it is 
demonstrated, that a value of c ≥ 103 suffices and the difference to analytical solution 
[3] is less than 1 %. It is suggested that the last formula is better to attain good 
computational speed at the same level of accuracy. This approach circumvents the 
problem of solving differential Eq. (7) with the discontinuous signum function. 
 
2. The slip-stick transients have to be accounted, if physically correct description of 
the friction process is sought. This is furnished in following way: 
 i. For vr ≠ 0 Eq. (7) is valid. 
ii. When the vr ≠ 0 to vr = 0 transition occurs the movement stops and the force 

balance condition across the friction interface, described by Eq. (4), has to be 
tested, while: 

 

rxL xkumF += && .      (9) 
 

Until |FL| ≤ Ffs ⇒ vr = 0 and no relative movement occurs.  
As soon as |FL| > Ffs ⇒ vr ≠ 0, the dry friction force abruptly decreases to Ffk and 
Eq. (7) has to be re-solved with actual initial conditions.  

Sometimes the distinction between the slip and stick states is facilitated by a set 
of more precise conditions [11, 13]:  

 
Slipping:            |vr| > ε      |FL| > Ffs,             (10a) 

 

Sticking:    |vr| < ε  AND |FL| < Ffs.            (10b) 
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The operation for evaluation of conditions (10) is called ”variable zero-
crossing„ and is facilitated in the MATLAB/Simulink by specific procedures [15]. 
The main difficulty for equidistantly paced numerical systems, in contrary to 
analytical considerations, is the need of precise determination of the time instant, 
when the zero crossing occurs, or when |vr| < ε, while the value of ε has to be assessed 
independently. This approach is very important when equidistantly sampled 
experimental data have to be processed. The MATLAB standard stiff ordinary 
differential equations solvers with variable time increment are not applicable. Hence 
another approach was followed and a proprietary fixed equidistant step ordinary 
differential equations solver has been developed, which specifically caters for the 
determination of the |vr| < ε condition within the given fixed time increment ∆t.  

EXAMPLE OF APPLICATION OF THE ABOVE APPROACHES 

An example of the described simulation approaches will be given, using Eq. (7), with 
following parameters: mass m = 75 kg, spring stiffness kx = 7500 N/m, giving 
undamped natural angular frequency of ω0 = 10.0 rad/s, i.e. natural frequency of 
f0 = 1.592 Hz. Let assume a linear damping coefficient of a value of b = 500 Ns/m 
(i.e. damping ratio ξ = 0.333) and a constant normal force FN, equal to the body 
weight of 735.75 N. The maximal relative displacement is limited to 25 mm. Two 
cases will be analysed, denoted as ”low dry-friction„ and ”high dry-friction„ cases: 

i. The low  dry-friction case of Ffk = 15 N; 
ii. The high dry-friction case of Ffk = 45 N. 

Due to inherent non-linearity the standard approach via the frequency response 
function calculation for assumed harmonic excitation with constant acceleration 
amplitude is not viable. Instead the ratio of response RMS value ax = { }x&&RMS and 
excitation RMS value au = { }u&&RMS  for excitation acceleration RMS constant values 
au = 0.50 m®s-2, 0.75 m®s-2 and 1.00 m®s-2 are calculated. A harmonic excitation is used 
with frequency step of 0.1 Hz in the frequency band 0.5 Hz till 10.0 Hz and the 
results are graphically depicted for each frequency step in Fig. 3 for the low friction 
system of Ffk = 15 N and in Fig. 4 for the high friction system of Ffk = 45 N, 
respectively. The left figures a) are the relative displacement transmissibility 
functions ( { }rRMS x / { }uRMS ). The right figures b) are the acceleration 
transmissibility curves. For reference the same courses for a viscously damped SDOF 
oscillator without dry-friction are depicted too. The physically correct state switching 
model is used. Code is written in MATLAB/Simulinků , integration step is 2.5×10-3 s. 

First of all the difference to a SDOF course without friction at frequencies 
above √2⋅f0 is seen in the right pictures ’  in dependence on the excitation amplitude 
the value of the transmissibility is larger than expected and so the vibration mitigation 
is less. For the higher friction case for low excitation amplitude the transmissibility 
value hovers around unity. This indicates, that the oscillatory system is in standstill 
(e.g. for au ≤ 0.50 m®s-2) and so no vibration mitigation occurs. 
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a) 

 
b) 

Figure 3 —  Courses of transfer functions for SDOF oscillatory system with Ffk = 15 N 
for three excitation intensities and reference Ffk = 0 N (▬ ▬ );  
au = 0.50 m®s-2 (• • • ); au = 0.75 m®s-2 (•  •  • ); au = 1.00 m®s-2 (•  é •  é • ) 

 

 
a) 

 
b) 

Figure 4 —  Courses of transfer functions for SDOF oscillatory system with Ffk = 45 N 
for three excitation intensities and reference Ffk = 0 N (▬ ▬ );  
au = 0.50 m®s-2 (• • • ); au = 0.75 m®s-2 (•  •  • ); au = 1.00 m®s-2 (•  é •  é • ) 

 
Relative displacement transmissibility at higher frequencies does not reach the 

expected unity value and for au ≤ 0.50 m®s-2 hovers at zero, again indicating system 
standstill. The acceleration amplification at damped natural frequency fd decreases 
due to friction influence. The decrease in amplification (increase in damping) is 
excitation amplitude dependent. These system features were observed while analysing 
signals from laboratory measurements of a seat suspension system, reported in [12].  

PERFORMANCE UNDER REALITY-LIKE RANDOM EXCITATION 

A problem, associated with zero crossing detection, is the numerical stability of the 
method utilising either signum function description in the vicinity of the zero crossing 
point. It has been observed, that the numerical solution exhibits false parasitic 
oscillations with a period 2∆t, even if the real system would stop due to friction. 
Hence the non-linearity introduced by the signum function requires some care in 
application. The error appears mostly in the system output acceleration, especially 
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when the system is subjected to low intensity random excitation. This is illustrated in 
Fig. 5 for two different stationary random excitation signals with au = 0.33 m®s-2 and 
au = 0.67 m®s-2, representing reality-like excitation in response to variation of the 
kinetic friction force Ffk. The ratio of response and excitation RMS values is plotted 
for both simulation approaches, as well as for the viscously damped SDOF oscillator 
without dry-friction, which is obviously independent of the dry-friction influence.  

 

 
a) au = 0.33 m®s-2 

 
b) au = 0.67 m®s-2 

Figure 5 —  Acceleration RMS values ratios for the SDOF oscillatory system 
Ffk = 0 N (▬ ▬ ) and the two simulation approaches as function of Ffk: 
the signum approach (•  •  • ), the slip-stick approach (• • ) 

 
From these courses it is clearly seen, that the signum approach is not applicable 

if higher dry-friction values can be reasonably expected. The differences are due to 
the above-described parasitic oscillations. It is also seen, that the oscillatory system 
comes to rest when the dry friction values is increased and this state is excitation 
intensity dependent, which is not reflected at all either by the SDOF model without 
friction or the signum model. Fig. 5 indicates, that at low dry-friction values the 
SDOF system without dry-friction shows a marginally worst performance than both 
models including dry-friction. It predicts a slightly higher transmissibility course.  

CONCLUSION 

Two approaches to dry-friction modelling were presented and compared to each other 
and to the common SDOF oscillatory system. It has been shown that the physically 
correct approach, catering for switching between the slip and stick states, is of general 
nature. It describes the system performance for a wider dry-friction force range than 
the simpler signum approach does and caters for the stick phenomena. This is of 
prime importance if random kinematical excitation is used, as encountered in many 
practical situations. The difference in system performance to a common SDOF 
oscillator without dry-friction force influence has been demonstrated.  

The presented approach is of generic nature and can be used for systems 
simulation with dry-friction, exposed to random kinematic excitation.  
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