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Abstract

An underactuated manipulator is defined as a manipulator with fewer actuators than degree of

freedom of the system, which, for example, corresponds to the situation that one of actuators

of a manipulator breaks down. Because it is especially hard to fix the broken actuator in space,

control methods of the underactuated manipulator are generally considered to be employed

as emergency control methods in space. However, the most past studies on the underactu-

ated manipulator have targeted ground-fixed manipulators although no fixed plane exists in

space. In this paper, a control method of a two-link underactuated manipulator considering the

application of the manipulator in space is proposed. The control method utilizes bifurcation

phenomena occurring in the free link by the effect of high-frequency excitation, which also

makes state feedback of the free joint not necessary. We finally confirm the validity of the

theoretical analysis by simulations.

INTRODUCTION

Many studies of nonholonomic systems represented by underactuated manipulators have been

made in recent years [1] [2]. Arai and Tachi [3] theoretically and experimentally proposed a

control method for a two-link underactuated manipulator with a brake at the passive joint by

using the coupling characteristics of the system. Yu et al. [4] presented a control method using

friction at the free joint for an underactuated manipulator without such devices as brakes.

However, there have not been any studies on underactuated manipulators considering

the environment where the manipulator is neither fixed on the ground nor affected by grav-

ity although the major application considered for underactuated manipulators is utilization in

space. In this paper, we propose a control method of a two-link space underactuated manipula-

tor. We particularly utilize bifurcation phenomena occurring in the free link by high-frequency
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excitation [5] and control position of the free link without state feedback of the link [6][7].

The validity of the control method is theoretically clarified.

ANALYTICAL MODEL AND EQUATION OF MOTION
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Figure 1: Analytical model of the manipulator

The analytical model of a two-link space underactuated manipulator mounted on a base

is shown in Fig. 1. No external force is applied to the links, and the links and the base rotate

on a two-dimensional plane. The first joint of the manipulator has an actuator giving torque τ

for the first link. The second joint has neither actuator nor sensor and is called the free joint.

The parameters are as follows:

m0: mass of the base (15.2 kg)

m1: mass of the first link (1.234 × 10−1 kg)

m2: mass of the second link (3.92 × 10−2 kg)

l0: distance between the center of mass of the base and the first joint(1.55×10−1 m)

l1: length of the first link (1.50 × 10−1 m)

l2: length of the second link (1.025 × 10−1 m)

l1g: distance between the first joint and the center of mass of the first link (7.60 ×

10−2 m)

l2g: distance between the second joint and the center of mass of the second link

(2.285 × 10−2 m)

I0: moment of inertia of the base about the center of mass (1.8468 × 10−1 kgm2)

I1: moment of inertia of the first link about the center of mass (2.965 × 10−4 kgm2)

I2: moment of inertia of the second link about the center of mass (4.4094 × 10−4

kgm2)

θ0: relative angle of the base to the initial condition[rad]
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θ1: relative angle of the first link to the base[rad]

θ2: relative angle of the second link to the first link[rad]

where the values in the parentheses correspond to those of the experimental apparatus men-

tioned later, and they are also used in the after-mentioned numerical simulations.

In this paper, we set that angular velocity of the base Ω0 is kept constant and relative

angle of the first link to the base θ1 is excited as

θ1 = aθ1
cos ωt + θ1off , (1)

where aθ1
is excitation amplitude, ω is excitation frequency and θ1off is the center of excita-

tion. We then obtain the following dimensionless equation of motion about the second (free)

link:

d2θ2

dt∗2
+ µ

dθ2

dt∗
− (1 + c2 cos θ2)aθ1

cos t∗

+c1Ω
∗2

0 sin(aθ1
cos t∗ + θ1off + θ2) + c2(Ω

∗

0 − aθ1
sin t∗)2 sin θ2 = 0, (2)

where the dimensionless time t∗ is expressed as t∗ = ωt, and the dimensionless parameters

are shown as follows:

c1 =
m0m2l0l2g

(m0 + m1 + m2)(I2 + m2l22g)
, c2 =

m2l1l2g(m0l1 + m1l1 − m1l1g)

(m0 + m1 + m2)(I2 + m2l22g)
,

µ =
c

(I2 + m2l
2

2g)ω
, Ω∗

0 =
Ω0

ω
. (3)

THEORETICAL ANALYSIS

Averaged Equation

We set that the excitation frequency ω is sufficiently larger than the angular velocity of the

base Ω0, which is what “high-frequency” means in this paper, namely, Ω∗

0
(= Ω0/ω) = O(ǫ).

We evaluate the magnitudes of the dimensionless parameters as

c1 = O(1), c2 = O(1), µ = O(ǫ), aθ1
= O(ǫ). (4)

Using the method of multiple scales [8], Eq. (2) can be simplified to the following averaged

equation:

d2θ2

dt∗2
+ µ

dθ2

dt∗
+ σ{c1 sin(θ1off + θ2) + c2 sin θ2} −

a2

θ1
c2
2

2
sin θ2 cos θ2 = 0, (5)

where σ ≡ Ω∗2

0
(= Ω2

0
/ω2). The first term is inertial force, the second is damping force,

the third is centrifugal force caused by the rotation of the base, and the last is the effect of

excitation.

Letting the time derivative be zero yields the equilibrium equation

σ{c1 sin(θ1off + θ2eq) + c2 sin θ2eq} −
a2

θ1
c2

2

2
sin θ2eq cos θ2eq = 0, (6)

where θ2eq is equilibrium points of θ2, which are determined by the values of σ and θ1off .
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Bifurcation Phenomena
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Figure 2: Bifurcation diagrams of the position of the second link

By solving Eq. (6) about θ2eq, we obtain Figs. 2 (a) and (b) which show the relation-

ships between σ (proportional to 1/ω2) and equilibrium points of θ2 when θ1off = 0 and

θ1off = π/4, respectively. The solid and dashed lines respectively denote the stable and

unstable equilibrium states in the figures.

When θ1off = 0, the second link undergoes a supercritical pitchfork bifurcation. The

stable equilibrium states change from θ2eq = ±π/2 at σ = 0 to θ2eq = 0 beyond σ =

a2

θ1
c2

2
/2(c1+c2). Since σ is proportional to 1/ω2, θ2eq becomes nontrivial when the excitation

frequency ω exceeds a certain value. That shows, by changing the excitation frequency ω, it

is possible to control the stable equilibrium point where the position of the second link θ2

converges. On the other hand, perturbated supercritical pitchfork bifurcations occur when

θ1off 6= 0.

NUMERICAL SIMULATIONS

To confirm the validity of the theoretical analysis, we numerically solve Eq. (2), which is the

equation before the averaging, and the averaged equation (5), using the Runge-Kutta method.

Figures 3 (a), (b) and (c) show the results of the simulations when ω/2π = 20 Hz (σ =

0.1736×10−4), ω/2π = 7.5 Hz (σ = 1.235×10−4) and ω/2π = 4.5 Hz (σ = 3.429×10−4),

respectively. The black lines and the grey lines denote the solutions of the original equation 2

and the averaged equation 5, respectively. Angular velocity of the base is kept 60Ω0/2π = 5

rpm, and the center of excitation θ1off = 0. The critical value of σ, where bifurcation occurs

and nontrivial equilibrium points begin to exist, is 2.038 × 10−4 in the considered condition.

In Fig. 3 (a), the value of σ is quite smaller than the critical value, so the stable equi-

librium point of θ2 is near π/2 according to Fig. 2 (a). Corresponding to the analytical result,
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(a)Time histories of θ2 (ω/2π = 20 Hz;

σ = 0.1736 × 10−4)
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(b)Time histories of θ2 (ω/2π = 7.5 Hz;

σ = 1.235 × 10−4)

6000400020000

0

π/4

π/2

θ
2
 [
ra

d
]

t*

(c)Time histories of θ2 (ω/2π = 4.5 Hz;

σ = 3.429 × 10−4)

Figure 3: Numerical simulations of the motion of the second link (comparison between the

original and the averaged equation; black lines: the original, grey lines: the averaged)

angle of the second link θ2 converges to the value about π/2.

When the excitation frequency ω/2π = 7.5 Hz (Fig. 3 (b)), σ is closer to the critical

point, and θ2 becomes stable at the value about π/4 as the theoretical analysis shows.

Fig. 3 (c) shows that stable equilibrium point of θ2 is 0 for the values of σ beyond the

critical point.

For every condtion of σ above, the solution of the averaged equation lies on the solution

of the original equation in the steady state, while the transient states of them are not exactly

corresponding. That tells the theoretical analysis is valid enough in the steady state.
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CONCLUSIONS

This paper proposed a position control method of an underactuated manipulator mounted on a

rotating base. We theoretically clarified dynamics of the manipulator and the control method

utilizing bifurcation phenomena which occur in motion of the free link under high-frequency

excitation. We then confirmed the control method by simulations.
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