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Abstract 
This paper treats a hybrid type vibration isolation system for 3-DOF vibrations, that is, 
bouncing, pitching and rolling vibrations. The hybrid type system is composed of passive 
spring-damper system and active system with electromagnetic actuators. The controller for 
the vibration isolation system derives one control force for bounce and two control moments 
for pitch and roll in regard to the center of gravity. Usually, an actuator to supply vibration 
control force is set in each supporting part at the four corners of the loading platform. The 
allocation of three control outputs to four actuators is not unique because of redundancy. In this 
paper, the allocation of the control output is discussed in detail. 

INTRODUCTION 

This paper treats a hybrid type vibration isolation system composed of a passive 
spring-damper system and an active system with electromagnetic actuators. The 
passive system reduces vibrations of high frequency range and an active one reduces 
those of low frequency range. The hybrid system isolates 3-DOF vibrations, that is, 
bouncing, pitching and rolling vibrations in this paper. Some control theory, e.g. PID, 
LQG, ∞H , etc., is applied to design the active system (Mizutani et al, Doyle et al), and the 
optical control gains to give the effective vibration isolation performance are provided. 
The controller of the vibration isolation system derives one control force for bouncing 
vibration and two control moments for pitching and rolling ones in regard to the centre 
of gravity. Usually, an actuator to supply vibration control force is set in each 
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supporting part at four corners of the loading platform. The allocation of three control 
outputs to four actuators is not unique because of redundancy, so that we discuss the 
allocation of the control force and moments about the centre of gravity to each actuator 
in detail. 
 

EQUATIONS OF MOTION AND STATE EQUATION 

Equations of Motion 

Figure 1 shows the analytical model of the hybrid type vibration isolation system. The 
loading platform is assumed a rigid body and assumed to have three DOF: bounce, 
pitch, and roll for the centre of gravity (Shannan). The loading platform is supported by 
four sets of vibration isolation parts, each part of which is consisted of a passive 
spring-damper part, and an active part with electromagnetic actuators. Using symbols 
in Figure 1, the equations of motion for 3-DOF, that is, the bouncing displacement Gx , 
the pitching angle Pθ  and the rolling angle Rθ , are derived as follows: 
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where XYk  and XYc  are the coupled 
spring constant and the coupled viscous 
damping coefficient in the XY  
direction, respectively. The symbol Gu  
is the control force in the Gx  direction, 
and symbols Pu  and Ru  are control 
moments in Pθ  and Rθ  directions. 

State Equation and Output Equation 

The control subjects of this system are 
the bouncing acceleration Gx&& , and the 
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Fig.1 Analytical model 
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pitching and rolling angular accelerations Pθ&&  and Rθ&& , since acceleration of the loading 
platform should be decreased to avoid the damage of carried fragile products. The 
angular accelerations Pθ&&  and Rθ&&  are hardly measured for the practically in-plant 
vehicle, so that accelerations of four supported points FLx&& , FRx&& , RLx&&  and RRx&&  are 
measured instead of Gx&& , Pθ&&  and Rθ&& , and fed back to the controller. The equation for 
transformation from FLx&& , FRx&& , RLx&&  and RRx&&  to Gx&& , Pθ&&  and Rθ&&  are geometrically derived 
as follows: 
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where A  and B  are 
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The state vector and the control force vector are defined as 

T

RPGRPG xx ][ θθθθ &&&=x  and T
RPG uuu ][=u , respectively, and the system 

disturbance vector as T

RRRLFRFLRRRLFRFL dddddddd ][ &&&&=d  where symbols FLd , 
FRd , RLd  and RRd  are absolute displacements of the supports as shown in Figure 1. 

When the out put vector is defined as T
RPGx ][ θθ &&&&&&=y , the state equation and the 

output equation are expressed as follows: 
 

Cxy
EdBuAxx

=
++=&

                                                                                                 (3) 

COTROLLER DESIGHN 

Since the subject of this paper is 
to discuss how to allocate 
3-DOF control forces to four 
actuators, an appropriate 
control theory can be used to 
design the active vibration 
isolation system. As an example, 
we use the ∞H  control theory in 
this paper. 

 
Table 1  Parameters for simulation 

Weight  [kg] m=3.9 

LbF= LbR=0.182 Length 
[m] LtL= LtR=0.072 

kFL=kFR=3.7×103   Spring Constant 
[N/m] kRL=kRR=3.7×103  

cFL=cFR=5.0 Damping Coefficient 
[Ns/m] cRL=cRR=5.0 

JP=0.11 Moment of Inertia  
[kgm2] JR=0.02 
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Table 1 indicates 
parameters correspond to 
the experimental apparatus. 
For simulations, the 
harmonic disturbance that 
the amplitude is 0.25mm 
and differences in the phase 
are °45  for FRd , °90  for 

RLd  and °135  for RRd  
against FLd  is applied to 
each support. 
Figure 2 shows the 
bouncing acceleration, and 
the pitching and rolling 
angular accelerations with 
and without ∞H  control for parameters in Table 1. 

ALLOCATION OF CONTROL FORCE AND MOMENTS TO 
ACTUATORS 

The 3-DOF control force and moments are derived as the bouncing force and the 
pitching and rolling moments for the centre of gravity of the loading platform by 
applying ∞H  control theory to the state equation and the output one in Equation (3). 
An actuator to supply vibration control force is set in each supporting part at four 
corners of the loading platform as shown in Figure 1. 

The allocation of 3-DOF control force and moments to four actuators is not 
unique because of redundancy of actuators to the control force and moments. 

In this chapter, as an example, we investigate the possibility whether 3-DOF 
control force and moments can be uniformly allocated to the output of each actuator or 
not. 

Application of Pseudo-Inverse Matrix 

From the geometrical condition of four actuators set at four corners of the loading 
platform, the output vector of the actuator acu  is related to the control force vector u  
by the following equation. 
 

aceq uGu =



































−−
−−=
















=

RR

RL

FR

FL

tRtLtRtL

bRbRbFbF

R

P

G

u
u
u
u

LLLL
LLLL

u
u
u 1111

                                           (4) 

0 10 20 30 40 50
0

2

4

6

8

Frequency  [Hz]

B
ou

nc
in

g
A

cc
el

er
at

io
n

[m
/s

2 ]

0 10 20 30 40 50
0

20

40

60

Frequency  [Hz]

Pi
tc

hi
ng

A
ng

ul
ar

 A
cc

el
er

at
io

n
[r

ad
/s

2 ]
0 10 20 30 40 50
0

20

40

60

Frequency  [Hz]

R
ol

lin
g

A
ng

ul
ar

 A
cc

el
er

at
io

n
[r

ad
/s

2 ]

Uncontrolle
Controlled

 
Fig.2 Acceleration responses of acceleration and 

angular acceleration 
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The output vector acu  seems to be 
derived from the control force vector u  
when both sides of Equation (4) are 
premultiplied by the inverse matrix 1−

eqG  
of the translation matrix eqG , but the 
inverse matrix 1−

eqG  cannot be defined 
because the matrix eqG  is a non-square 
matrix of (3,4)-type. Defining a square 
translation matrix instead of the inverse 
matrix 1−

eqG  as the pseudo-inverse matrix 
∗
eqG , the vector acu  can be transformed 

from the vector u  as follows: 
 

( ) uGGGuGu eqeqeqeqac

1* −
== T         (5) 

 
The control force and moments for 

the centre of gravity obtained by 
numerical simulation is as shown in 
Figure 3. Figure 4 shows the output force 
of each actuator allocated from the 
control force and moments as shown in 
Figure 3 by Equation (5). From Figure 4, 
both output forces FLu  and RRu  are 
larger than the others, and then output 
forces transformed by the 
pseudo-inverse matrix ∗

eqG  do not 
become the similar values. 

A set of output forces in Figure 4 is 
made to a standard set hereafter and 
termed by invP . 

Application of Generalized Inverse 
Matrix 

There are many equivalent allocations 
from 3-DOF control force and moments 
to four actuators because of redundancy. In this section, the transformation is 
represented by the generalized inverse matrix. 

We consider the case that the control force vector acu  is translated by the 
generalized inverse matrix *

eqeqmeq
*

eqm
*

eq GGzGGzG −+ , which a zero space matrix is 
added to the pseudo-inverse matrix to give generality to the transformation matrix 
(Yanai), as follows: 
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Fig.3 Control force and moments for 

centre of gravity 
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Fig.4 Actuator outputs calculated by 

pseudo inverse matrix 
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( )uGGzGGzGu *
eqeqmeq

*
eqm

*
eqac −+=                                                                     (6) 

 
where mz  is called the zero space matrix that is a non-square matrix of (4,3) type. The 
properties of the generalized inverse matrix (6) depend on the zero space matrix that 
can be given arbitrarily. Since the pseudo-inverse matrix ∗

eqG  has the relation 
IGG eq

*
eq = , Equation (6) is rewritten as 
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It is obvious from Equation (7) that the zero space matrix mz  acts multiplicatively 

on the vector u . For the same parameters as Figure 3, Equation (7) is expressed as 
follows: 
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The translation of Equation (8) 

maintains the same mean even if 
elements of mz  except one row 
elements are put zero, because 
elements 1Z , 2Z  and 3Z  depend on 
elements of first, second and third 
rank of mz , respectively. 

Figure 5 shows frequency 
responses of the maximum output for 
each actuator obtained by Equation 
(8) for parameters as 4.01 ±=Z , 

02 =Z  and 03 =Z . For 4.01 −=Z , 
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Fig.5 Actuator outputs calculated by general  

inverse matrix

Pinv 
Z1=0.4, Z2=0, Z3=0 
Z1=-0.4, Z2=0, Z3=0 
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the frequency response curve of each actuator shows the similar output in Figure 5. The 
output of each actuator can be adjusted to a certain value by using the generalized 
inverse matrix in Equation (6), but elements of one row of mz  should be obtained by 
trials and errors in order to make the output of each actuator the similar value. 

Application of Dynamic Equilibrium 

From dynamic equilibrium among the output of each actuator, and the control force 
and moments for the centre of gravity, the following relation is derived.  
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where the control force Gu  and control moments Pu  and Ru  are known, and the 
displacements between the centre of gravity and each actuator are also known. 
Equation (9) cannot be solved, because there are three relations but unknown 
parameters are four. If the output of one actuator, for example FLu , can be obtained by 
some means, the following simultaneous equations are set up. 
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Let us consider an example that the magnitude of the actuator output FLu , which is 

transformed from the control force vector u  by using the pseudo-inverse matrix, is 
arranged in a desired magnitude, and substituted instead of FLu  in the right hand side of 
Equation (10). Figure 6 shows frequency responses of the maximum output for each 
actuator obtained by Equation (10) for parameters 0, FLu8.0  and FLu2.1  instead of FLu . 
It is obvious from Figure 6 that the frequency response curve of each actuator but RRu  
shows the similar degree of output. As a result, the output of each actuator can be 
adjusted to the given output of each actuator by the allocation used the dynamic 
equilibrium of the system. 

SUMMARY  

Concerning to the allocation of 3-DOF control forces to four actuators of the hybrid 
vibration isolation system proposed in this paper, the major conclusions obtained can 
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be summarized as follows: 
The control force and 

moments for the centre of gravity, 
that is, the bouncing force and the 
pitching and rolling moments can 
be allocated to the output force of 
each actuator by the 
pseudo-inverse matrix. The output 
of each actuator is given 
unconditionally and cannot be 
adjusted to the similar values for 
this allocation. 

By using the generalized 
inverse matrix, the output of each 
actuator is adjustable to a certain 
value, but trials and errors have to 
be performed to make the output 
of each actuator the given value. 

If the output of one actuator 
can be obtained by some means, 
the simultaneous equations are 
obtained from the dynamic equilibrium of the system. The control force and moments 
can be allocated to the output force of each actuator by solving the simultaneous 
equations of the dynamic equilibrium, and the output of each actuator can be adjusted 
to the given output of each actuator. 
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Fig.6 Actuator outputs calculated by dynamic 

                 equilibrium 
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