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Abstract

This paper treats a hybrid type vibration isolation system for 3-DOF vibrations, that is,
bouncing, pitching and rolling vibrations. The hybrid type system is composed of passive
spring-damper system and active system with electromagnetic actuators. The controller for
the vibration isolation system derives one control force for bounce and two control moments
for pitch and roll in regard to the center of gravity. Usually, an actuator to supply vibration
control force is set in each supporting part at the four corners of the loading platform. The
allocation of three control outputs to four actuators is not unique because of redundancy. In this
paper, the allocation of the control output is discussed in detail.

INTRODUCTION

This paper treats a hybrid type vibration isolation system composed of a passive
spring-damper system and an active system with electromagnetic actuators. The
passive system reduces vibrations of high frequency range and an active one reduces
those of low frequency range. The hybrid system isolates 3-DOF vibrations, that is,
bouncing, pitching and rolling vibrations in this paper. Some control theory, e.g. PID,
LQG, H., etc., is applied to design the active system (Mizutani et al, Doyle et al), and the
optical control gains to give the effective vibration isolation performance are provided.
The controller of the vibration isolation system derives one control force for bouncing
vibration and two control moments for pitching and rolling ones in regard to the centre
of gravity. Usually, an actuator to supply vibration control force is set in each
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supporting part at four corners of the loading platform. The allocation of three control
outputs to four actuators is not unique because of redundancy, so that we discuss the
allocation of the control force and moments about the centre of gravity to each actuator
in detail.

EQUATIONS OF MOTION AND STATE EQUATION

Equations of Motion

Figure 1 shows the analytical model of the hybrid type vibration isolation system. The
loading platform is assumed a rigid body and assumed to have three DOF: bounce,
pitch, and roll for the centre of gravity (Shannan). The loading platform is supported by
four sets of vibration isolation parts, each part of which is consisted of a passive
spring-damper part, and an active part with electromagnetic actuators. Using symbols
in Figure 1, the equations of motion for 3-DOF, that is, the bouncing displacement x.,
the pitching angle &, and the rolling angle 8., are derived as follows:

MK, = =Ko Xe —KepBhr —KerBr =Co X —Copbh —Corbs +Ug +Kpdy
+ KO g + Ko Opy +Kegleg +Cp O +Ceplpg +Cp lp +Conlig
3,0, =KepXs =Ko, —Kenb =CepXe —Cob, —Conby +U,
—Ke Lyrdp, —KegLop e + Ko Linry + Ko LogOig 1)
—c L d —co L d . +Cy Liody +Coplidoy
30, = —KgoXg —KorB =Ko, = CopXg —Cpnbs —Co0: +U,
-k L de +KegLgl ey —Kg Lirde +KegLglag
—c. L d +C L —Co Lydo +Corlodon

where k., and c, are the coupled
spring constant and the coupled viscous
damping coefficient in the XY
direction, respectively. The symbol u,
is the control force in the x. direction,
and symbols u, and u, are control
moments in 6, and &, directions.

State Equation and Output Equation

The control subjects of this system are
the bouncing acceleration X, and the Fig.1 Analytical model
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pitching and rolling angular accelerations 8, and &, , since acceleration of the loading
platform should be decreased to avoid the damage of carried fragile products. The
angular accelerations 8, and 8, are hardly measured for the practically in-plant
vehicle, so that accelerations of four supported points X. , X.., X, and X. are
measured instead of X, 8, and &, , and fed back to the controller. The equation for

transformation from % , %.,, ¥, and %, to %, 8, and &, are geometrically derived
as follows:

% (1-A-B) (-A+B) (+A-B) (1+A+B)|*=
é _ 1 _ 2 _ 2 2 2 Xer (2)
ép 4 LbF + LbR LbF + LbR LbF + LbR LbF + LbR XRL
R 2 2 2 %
- - RR
LtL + LtR LtL + LtR LtL + LtR LtL + LtR

where A and B are

— LbF B LbR B= Ln_ B LtR
Loe + Lie L, +Lg

The state vector and the control force vector are defined as
x=[x. 6, 6, x, 6, 6,1 and u=[u; u, u.]", respectively, and the system
disturbance vector as d=[d, d. d, d. d. dn dy d]" Where symbols d, ,
d., d, and d., are absolute displacements of the supports as shown in Figure 1.
When the out put vector is defined as y=[%, &, 6&,]", the state equation and the
output equation are expressed as follows:

X =Ax+Bu+Ed

y =Cx ®)

COTROLLER DESIGHN Table 1 Parameters for simulation
Weight  [kg] m=3.9

Since the subject of this paper is

to discuss how to allocate Length Lor= Lye=0.182

3-DOF control forces to four : [m] Lu= Lx=0.072 -

actuators, an  appropriate SprlngNS:onstant ke =Krr=3.7x 10°

control theory can be used to .[ ml — kRL:kR_RZB'Zx 10

design the active vibration Dampl?ﬁ,g%ﬁff'uem CFLZCFR:g'g

isolation system. As an example, Moment of Tnertia CRS_:RORll'

we use the H, control theory in [kgm?] J::0:02

this paper.
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Flgure_ c ShOVYS the Fig.2 Acceleration responses of acceleration and
bouncing acceleration, and angular acceleration

the pitching and rolling
angular accelerations with
and without H_ control for parameters in Table 1.

ALLOCATION OF CONTROL FORCE AND MOMENTS TO
ACTUATORS

The 3-DOF control force and moments are derived as the bouncing force and the
pitching and rolling moments for the centre of gravity of the loading platform by
applying H_ control theory to the state equation and the output one in Equation (3).
An actuator to supply vibration control force is set in each supporting part at four
corners of the loading platform as shown in Figure 1.

The allocation of 3-DOF control force and moments to four actuators is not
unique because of redundancy of actuators to the control force and moments.

In this chapter, as an example, we investigate the possibility whether 3-DOF
control force and moments can be uniformly allocated to the output of each actuator or
not.

Application of Pseudo-Inverse Matrix

From the geometrical condition of four actuators set at four corners of the loading
platform, the output vector of the actuator u,, is related to the control force vector u
by the following equation.

eq ~ac

u
— — UFR —
u=iue |5l -Le -Le Lg Lg u =G, u (4)
u
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The output vector u, seems to be
derived from the control force vector u
when both sides of Equation (4) are
premultiplied by the inverse matrix G
of the translation matrix G,, , but the
inverse matrix G_ cannot be defined
because the matrix G,, is a non-square \/\
matrix of (3,4)-type. Defining a square !
translation matrix instead of the inverse T o
matrix G, as the pseudo-inverse matrix Frequency [H2]

G,, , the vector u,, can be transformed \j\

from the vector u as follows:
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Fig.3 Control force and moments for
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numerical simulation is as shown in "] -
Figure 3. Figure 4 shows the output force =05/
of each actuator allocated from the % 10 20 30 20 50
. Frequency [Hz]
control force and moments as shown in 15 | |
Figure 3 by Equation (5). From Figure 4,  «_ 1}
both output forces u. and u, are ° "% | | ‘ ‘
0 10 20 30 40 50
larger than the others, and then output Frequency [Hz]
forces transformed by the 15 ‘ ‘
pseudo-inverse matrix G, do not «ggo;j
become the similar values. 0 % 5 % n %0
A set of output forces in Figure 4 is Frequency [Hz]
15 . . :
made to a standard set hereafter and . 4| —
xz2
termed by P, . 5= 05¢
00 10 20 30 40 50

Application of Generalized Inverse Frequency [Hz]

Matrix Fig.4 Actuator outputs calculated by
pseudo inverse matrix

There are many equivalent allocations

from 3-DOF control force and moments

to four actuators because of redundancy. In this section, the transformation is

represented by the generalized inverse matrix.

We consider the case that the control force vector u,_ is translated by the
generalized inverse matrix G, +z, -G, G,,z,G,.G,, , Which a zero space matrix is
added to the pseudo-inverse matrix to give generality to the transformation matrix
(Yanai), as follows:
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uac = (Geq* + zm _Geq*GqumGqueq* )u (6)
where z_ is called the zero space matrix that is a non-square matrix of (4,3) type. The
properties of the generalized inverse matrix (6) depend on the zero space matrix that
can be given arbitrarily. Since the pseudo-inverse matrix G_ has the relation
G., G, = |, Equation (6) is rewritten as

u, ={Geq* +(| -G,, G, )zm}u (7

It is obvious from Equation (7) that the zero space matrix z, acts multiplicatively
on the vector u. For the same parameters as Figure 3, Equation (7) is expressed as
follows:

1 -1 -1 1)z, z, 1z,
. -1 1 1 -1}z, z,, z
u, =1G,, +0.25 R T
-1 1 1 -1z, 2z, 1,
1 -1 -1 1 Iy Ip 14
Z Z, Z, 1
. -z, -7, -Z . -1
=4G,, +0.25 _' 2 *liu=G,, u+025 |((Z, Z, Z)u (8)
-Z, -4, -7, -1
Z Z, Z, 1
where — Pin
—— 21:0.4, ZZZO, Z3:O
_ —_ . Z,=-0.4, Z,=0, Z53=0
2,=2,, 72y "1y t7, 15 : 1 : ’ : ’
2,52,71, 15t 2, %
N % 10 20 30 40 50

Frequency [Hz]

The translation of Equation (8)
maintains the same mean even if
elements of z_  except one row
elements are put zero, because
elements z,, Z, and Z, depend on

elements of first, second and third 'oo o 55 5 5 w0
rank of z_, respectively.
Figure 5 shows frequency ' r
responses of the maximum output for . ‘ ‘ ‘ ‘
each actuator obtained by Equation 0 v ey g >0

(8) for parameters as Z, =04 , Fjg5 Actuator outputs calculated by general
Z,=0 and z,=0. For Z,=-04, inverse matrix
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the frequency response curve of each actuator shows the similar output in Figure 5. The
output of each actuator can be adjusted to a certain value by using the generalized
inverse matrix in Equation (6), but elements of one row of z_ should be obtained by
trials and errors in order to make the output of each actuator the similar value.

Application of Dynamic Equilibrium

From dynamic equilibrium among the output of each actuator, and the control force
and moments for the centre of gravity, the following relation is derived.

Ug =Ug FUg +Ug +Ug

Up = _(UFL +uFR)LbF +(URL +uRR)LbR
Ug = _(UFL +uRL)LtL +(uFR +uRR)LtR

(9)

where the control force u, and control moments u, and u, are known, and the
displacements between the centre of gravity and each actuator are also known.
Equation (9) cannot be solved, because there are three relations but unknown
parameters are four. If the output of one actuator, for example u, _, can be obtained by
some means, the following simultaneous equations are set up.

1 0 0
L
Ug -1 —= - ; Ug
u Ly * Lig Ly * Lig u
uac = = -1 # — ; ¢ (10)
Uae L, *+Lg L, *+Lg Ue
Ugr 1 1- (. _ L 1 1 Ur
Lee * L Ly +tLg Ly * Lig L, *+Lg

Let us consider an example that the magnitude of the actuator output u,, , whichis
transformed from the control force vector u by using the pseudo-inverse matrix, is
arranged in a desired magnitude, and substituted instead of u,, in the right hand side of
Equation (10). Figure 6 shows frequency responses of the maximum output for each
actuator obtained by Equation (10) for parameters 0, 0.8u,, and 1.2u., instead of u,, .
It is obvious from Figure 6 that the frequency response curve of each actuator but u,
shows the similar degree of output. As a result, the output of each actuator can be
adjusted to the given output of each actuator by the allocation used the dynamic
equilibrium of the system.

SUMMARY

Concerning to the allocation of 3-DOF control forces to four actuators of the hybrid
vibration isolation system proposed in this paper, the major conclusions obtained can
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be summarized as follows: — P, - = Un=0
The control force and — - 0.8up, U 1.2 UL

moments for the centre of gravity, 15

that is, the bouncing force and the iz 0; e .

pitching and rolling moments can
be allocated to the output force of 0 10 20 30 40 50
each actuator by the
pseudo-inverse matrix. The output
of each actuator is given

unconditionally and cannot be Frequency [Hz]

adjusted to the similar values for S S ]

this allocation. EZ 5l o, —o-=
By using the generalized 0y 10 20 30 0 50

inverse matrix, the output of each Frequency [Hz]

lSeeceeaa" e T
- an an

actuator is adjustable to a certain
value, but trials and errors have to
be performed to make the output 0 10 20 30 40 50

of each actuator the given value. Frequency [zl
If the output of one actuator Fig.6 Actuator outputs calculated by dynamic
equilibrium

can be obtained by some means,
the simultaneous equations are
obtained from the dynamic equilibrium of the system. The control force and moments
can be allocated to the output force of each actuator by solving the simultaneous
equations of the dynamic equilibrium, and the output of each actuator can be adjusted
to the given output of each actuator.
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