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Abstract 
In this paper, an Infinite Partition of Unity Method (IPUM) is implemented to study 
axisymmetric applications. The formulation is based on the convected wave equation taking 
into account the effect of  non-uniform flows on acoustic propagation. The concept of Infinite 
Elements developed by Astley et al. is used to deal with unbounded regions. The domain is 
first decomposed in an inner and an outer region. The PUM is used in the inner region while 
the outer one is discretized by a finite number of Partition of Unity Infinite Elements. The 
particularity of the PUM is that the shape functions can be constructed such that they 
correspond to a better approximation of the solution.  

INTRODUCTION 

During the last few years, the acoustic aspect has become a new design criteria 
because of restrictive standards and because of the need for increased comfort for 
customers. Computational methods are used to predict and minimise the noise of new 
products. 
 A common approach to simulate acoustic propagation is the use of the Finite 
Element Method (FEM). This is an efficient technique while the excitation frequency 
is kept moderate. The FEM is a deterministic approach. The FE mesh has to be 
generated such that the waves can be represented accurately by the shape functions. 
This means that the mesh will depend on the frequency. In general, a rule of the 
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thumb is considered : 6 to 10 elements are needed to approximate a wavelength. 
This rule is often used because it is practical. However, it has been shown [1] 

that this rule is not valid for medium and high frequencies. Ihlenburg showed that the 
error (in relative H1 semi-norm) of the acoustic finite element solution is composed of 
two terms : the interpolation (1) and the pollution error (2).  
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where h is the size of the mesh, p is the polynomial order of the shape functions and 
K is the non-dimensional wavenumber (K= 2πfL/c), f being the excitation frequency, 
L a characteristic length and c, the sound speed. 

Equation 1 shows that keeping the term Kh constant while increasing the 
frequency is not sufficient to ensure a constant error level. The effect of this relation 
is that the mesh should contain more than the classic 6 to 10 elements per wavelength. 
Due to the pollution error, when the excitation frequency increases, the mesh has to 
be deeply refined in order to ensure the accuracy of the numerical solution. 

The Partition of Unity Method is explored in this paper in order to overcome 
this limitation. Our concern corresponds in convected acoustic propagation for 
radiating applications. This is the case while considering turbofan noise. 

The influence of non uniform flow on acoustic propagation is taken into 
account in the formulation through the convected wave equation. This equation is 
obtained by assuming a potential flow. Gamallo [2,3] studied convected propagation 
with the Partition of Unity Method considering a plane wave enrichment.  

Dealing with radiating applications imposes to consider infinite domains. 
Infinite Elements enable to mesh an infinite domain with a finite number of elements 
but fail to provide accurate solution close to the boundary conditions. Practically, the 
domain will be subdivided in an inner region and an outer one. The Mapped Wave 
Envelope Infinite Element (MWEIE) developed by Astley [4] is considered in this 
paper. Astley et al. [5] proposed the use of Legendre polynomials for the radial basis 
instead of the original Lagrange polynomials, Dreyer [6,7] suggested the use of 
Jacobi polynomials and Eversman [8] extended Infinite Elements to the convected 
case. 

CONVECTED WAVE FORMULATION 

This section describes how to obtain a scalar equation corresponding to the convected 
wave propagation. This equation comes from the mass conservation, the momentum 
equation, some thermodynamic relations and the assumption of a compressible 
inviscid isentropic irrotational flow. 
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Convected Wave Equation 

The development of the convected wave formulation assume that the fluid is an ideal 
gas, that it is non viscous and that it does not conduct heat. We assume the flow is 
uniform at large distance and stationary. The influence of the gravity forces is 
neglected. We also assume that fluid elements are in thermodynamic equilibrium. 
These assumptions leads to an irrotational flow everywhere. 

All fields are decomposed in their steady mean and acoustic parts 
( ). The acoustic part corresponds to small harmonic perturbations 

(  with ). We also take into account the principal assumption 
which links the velocity field v to the potential (

tappp ,0 +=
ti

ata epp ω=, 12 −=i
φ ) : φ∇=v . The mass equation 

written in terms of potential leads to two equations. Grouping the zero order terms 
leads to equation 2 which has to be solved to provide the steady mean flow : c0, ρ0 
and v0 . Manipulations on the first order terms of the mass equation allow to write the 
convected wave equation which has the advantage to be scalar (eq. 3); ρ is the 
density. The pressure p is linked to the potential through the relation (4). 
 

( ) 000 =⋅∇ vρ            (2) 

 ( ) ( ) ( ) 02
0

02
02

0

0
02

0

0
02

0

0
0 =+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∇+∇⋅−⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅⋅∇−∇⋅∇ aaaaa ccc

i
c

φρωφρφρωφρφρ vvv    (3) 

( )aaa ip φωφρ ∇⋅+−= 0v          (4) 
 
The variational formulation is obtained by using a standard weighted residual 

procedure for equation 3 and by integrating it by parts over the domain Ω; S being the 
boundary, W the weight function and V a Sobolev space. 
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Partition of Unity Method 

The Partition of Unity Method has been proposed by Melenk and Babuška [9]. The 
characteristic of this method comes from the way the approximation subspace is 
defined. The approximation (Φ ) of the field (φ ) is constructed on a mesh like 
conventional finite element model. The partition of unity method is based on the 
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property (eq. 6) of partition of unity functions which enables the construction of a 
conforming space : Vh ∈ V. The approximation is given by equation 7 where Vjl are 
called enrichment functions or local approximation space and ejl are the unknowns. 
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Infinite Elements 

The infinite elements allow to deal with exterior domains by discretizing it with a set 
of conventional elements within an inner region (Ri) and a set of infinite elements in 
an outer region (Ro). These two regions are separated through an interface Γ. The 
infinite elements are created from the nodes of the conventional mesh lying on the 
interface. Figure 1 shows the construction of infinite elements. It also illustrates that 
infinite elements are mapped on a square parent element. All further integrations will 
be done on this parent element. 

 
 

 
Figure 1 –  Topology of an infinite element and its parent element 

 The aim of the infinite elements is to represent the radiation of the wave in the 
outer region without reverberation when the wave goes through the interface. This is 
done by assuming that the decay in the infinite field behaves like the radiation of a 
multipole. 
 
 The presence of the inner region is threefold : 
 

o it has to represent the field until the interface where we assume the field 
behaves like the radiation of a multipole; 

o proper infinite elements have to be created on a convex interface, this is 
rarely the case for the geometries of industrial applications; 

o an other condition is that the flow has to be uniform in the outer region.  



ICSV13, July 2-6, 2006, Vienna, Austria 

Formulation 

The inner region is governed by the system previously developed for the convected 
wave equation. The same integral relations can be used in the outer region if the 
Sommerfeld radiation condition (eq. 8) is taken into account. This equation ensures 
that the energy propagates in an outward direction. The shape and weight functions 
are chosen such that the contribution of the Sommerfeld equation vanishes. In this 
case, there is no contribution of the surface at infinity. 
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 The infinite shape function at node j (eq. 9) is composed by an interpolant 
function and a wavelike factor. The interpolant function takes into account a 
tangential (Q) and a radial shape function (eq. 9); η being the coordinate in the parent 
element corresponding to the infinite radial direction. 
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 The tangential shape function will be chosen to ensure the potential to be 
continuous across the interface Γ. The radial shape functions express the decay of the 
amplitude. Radial functions of initial infinite elements [4] were based on Lagrange 
polynomials. An expansion of this type contains a radial basis for spherical Bessel 
functions. In this work, Lagrange polynomials have been replaced by shifted 
Legendre ones to improve the conditioning. 
 The wavelike factor express the fact that the potential propagates with a 
wavenumber k. The phase function takes into account the influence of the uniform 
flow and is defined by equations 10 where M0 is the Mach number, (x’, y’) are the 
coordinates of source points while (x, y) are the coordinates of nodes lying on the 
interface (fig. 1). 
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 The weight functions are chosen following a conjugated (Petrov) Galerkin 
scheme. They are taken as complex conjugate of the shape functions times a 
geometric factor D. The geometric factor is chosen such that the integral over ∞  
vanishes. It could be noticed that the weight function is taken as the conjugate of the 
shape function. This choice ensures the cancellation of the exponential terms in the 
weak formulation and leads to an easier integration. 
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Coupling 

Since the acoustic potential must have continuity C0 through the inner and the outer 
region and because the degrees of freedom on the interface Γ stand for the two 
regions, the shape functions of each region must have the same value on the interface. 
Since on the interface, η=-1 and µ=0, the far field shape functions on the interface 
depend only on the tangential part : Q(x). This means that on the interface, the 
tangential part of the infinite shape functions have to be the same than the near field 
shape functions. Since the near field is discretized by partition of unity, so does the 
tangential shape functions. 

RESULTS 

Two convergence analysis have been performed to evaluate the performance of the 
method. In the first study, we consider the propagation of a wave in a convected 
axisymmetric duct; in the second, we model the radiation of a dipole. The 
convergence curves compare relative errors (eq. 11) where pa and pc are, respectively, 
the analytic and computed pressures.  
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 For the problem 1, the duct has a radius of 0.5m and is 2m long; the flow is 
propagating in the opposite direction to the wave with a Mach number of 0.4. The 
excitation frequency is equal to 600Hz and the propagating mode is the first mode of 
the second axisymmetric order. 
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Figure 2 –  Axisymmetric view of the real part of the pressure : pc (6192 dofs) 
he convergence curves (fig. 3) compare both linear FEM and PUM results. 
artition of Unity enrichment basis is defined by { }221 yxV jl = . The 
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convergence is obtained by increasing proportionally the number of elements along 
both x and y directions. We see that the PUM convergence is faster than for the FEM 
(fig. 3). PUM relative error (%) is lower and its convergence rate is higher : the FEM 
convergence rate is proportional to h2 while the PUM one behaves like h4. 

 

 
 
 

The second problem concerns a circular vibrating surface with a radius R=a, 
radiating in an outer region. The circular interface Γ at a distance R=b separates the 
infinite domain in an inner and an outer region. The axisymmetric order is 1 and the 
excitation frequency equals 400 Hz. The relative error is obtained through an 
integration over the inner mesh. 

Figure 3 – Convergence curves : relative error [%] versus dofs 

We show (fig. 4-a) that the convergence rate for linear IFEM depends on the 
radial order of the infinite elements. However, the convergence rate is slower than the 
expected one (h2 for cavities) even for high radial order (IE=20). While comparing 
IPUM and IFEM (IE=10) (fig. 4-b) we show that IPUM is more accurate than IFEM. 
As seen before, the partition of unity discretization (in the inner region : R<b) leads to 
a better convergence rate. But because of the coupling, the final convergence is 
restricted by the influence of the infinite elements. 

 

 

a

 
 Figure 4 –  Convergence curves : relative error [%] versus dofs 

) Linear FEM with IE order 2-10-20  and rate h2 (a=1m; b=2m) 
 b) Linear FEM and PUM with IE order 10 (a=1m; b=4m) 
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CONCLUSIONS 

This paper has presented a partition of unity formulation for convected radiation. The 
convected formulation and the coupling with infinite elements have been detailed. 
Two applications were shown to compare the finite element and the partition of unity 
methods. 
 Good convergence results were obtained with PUM enrichment, but the 
performance for radiation problem is still limited by the order of the infinite elements, 
as it is in FEM. 
 The global aim is to improve aircraft engine acoustics. Some developments 
have still to be done to consider axisymmetric nacelles. Further work will also include 
an optimisation procedure to find out the appropriate liner value. 
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