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Abstract 
A rotor system composed of a flexible shaft, unbalanced disks, elastic supports and a 
coupling of parallel offset/misalignment was investigated. The authors first derived the 
transfer matrix method (TMM) for a rotating shaft and discovered that its boundary 
shears were mutual coupling and time dependent in two perpendicular directions due to 
rotation. The coupling shears affected the shaft’s critical speeds up to 50%. The 
transfer matrix of a flexible coupling with parallel offset was then derived and its 
effects on critical speeds and whirling response were particularly focused on. 
Numerical results showed that the flexibility of a coupling significantly influenced the 
rotor-bearing critical speeds. The parallel offset, yet, acted as an excitation force 
similar to an unbalance except it affected through the whole driven part rather than a 
single point excitation. The coexistence of disk unbalance and coupling offset revealed 
that the offset caused more significant effects at rational speeds but the unbalance 
increased its weight with the rotation speed due to the centrifugal force. Response 
amplitude and whirl orbits across the offset were illustrated and it was discovered that 
in certain rotation range the shaft whirled asynchronously across the offset. 

INTRODUCTION 

Approaches to dynamic analysis of rotor systems can be basically divided into two 
main streams. The first one is the FEM [1-2], and the second one is the TMM [3].As to 
the existing literature related to TMM, Prohl [4] employed it for the dynamic analysis 
of rotor systems. Lund and Orcutt [5] established the transfer matrix of a shaft in a 
continuous concept but neglected both rotary inertia and gyroscopic effect. Chao and 
Huang [6] introduced a modified transfer matrix extended from Myklestad’s transfer 
matrix but employed the Euler beam and rigid disk as fundamental elements and 
obtained better natural frequencies and shapes than those of discrete model. Many 
researchers [7-8] continuously added efforts into TMM such as developing oil-film 
bearing matrix, including rotary inertia, gyroscopic effects of disks and many others. 
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Though TMM has been extensively applied for rotor analysis, to the authors’ 
knowledge, none of them included the commonly seen case of coupling offset. Dewell 
and Mitchell [9] experimentally studied parallel and angular offset of a metallic- 
disk-type coupling. They used real time analyzer and verified that frequencies of n× 
speed appeared due to offset. They suggested the 2× and 4× components be used for 
misalignment diagnosis. Xu and Marangon adopted a universal joint for misalignment 
and employed the component mode synthesis to analytically [10] studied and 
experimentally [11] validated the calculations. They concluded that the unbalance and 
misalignment could be characterized by 1× and 2× components, respectively. Lee and 
Lee [12] employed FEM for misaligned rotor-bearing system. In their studies, angular, 
parallel, and combined effects but no coupling were discussed with extensively shown 
whirling orbits. Al-Hussain and Redmond [13] analytically derived the equations of 
two Jeffcott rotors with rigid coupling of parallel offset. In their conclusions, they did 
not obtain the 2× component as predicted by the others.  

 The authors here derive the lateral transfer matrix for rotor-bearing system with 
flexible coupling and parallel offset. Through the derivation of a rotating shaft, the 
authors discover that the shaft’s boundary shears are time-dependent and coupled in 
two perpendicular directions. That was, to the authors’ knowledge, neither described 
nor noticed in the existing literature. Numerical results enhanced that these coupling 
shears could drastically reduce the shaft’s critical speeds up to 50% at high rotations. 
The coupling stiffness is found to affect the rotor’s critical speeds and the offset acts as 
an excitation similar to an unbalance but influences through the whole driven shaft. The 
whirling orbits are investigated as well. The results showed that the two ends of a 
misalignment may whirl asynchronously as rotation falls into some regions. 

EFFECT OF BOUNDARY COUPLING SHEARS                                                 
OF ROTATING SHAFTS 

 Figure 1 shows the fundamental elements in TMM, in which there are shafts, disks, 
and bearings. The new one is the parallel offset. First, the equations of motion and the 
boundary equations of a rotating shaft is derived to be 
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        Note that Eq. (2) reveals a very important phenomenon that boundary shears 
couple with the time derivatives of displacements in Y-Z  directions, as underlined, due 
to rotation. Unlike a non-rotating shaft, in which the boundary shears, said Vy and Vz, 
are uncoupled and time independent. The coupling terms could be significant at very 
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high rotational speed as to be shown. Solve the boundary value problem of eqs.(1,2) 
and draw its frequency  loci on  Figure 2, which illustrates the coupling shears effects 
on the shaft’s natural frequencies with the rotational speed, where 0/ωω=ω∗

nn , 

0/ωΩ=Ω∗  and nω is the rotating shaft’s nth natural frequency and 0ω is shaft’s first 
flexural natural frequency at 0=Ω . It is noticed that the exact (coupled) solutions have 
lower natural frequencies. That means the shaft’s critical speeds are overestimated if 
the coupling effects were ignored, e.g., around 50% higher for free-free case.  

TRANSFER MATRIX OF AN OFFSET MISALIGNMENT                     
AND TOTAL TRANSFER MATRIX 

There are two types of coupling missalignment, one is of parallel offset, and the other is 
of angular offset. In the present studies a flexible coupling is modeled as a translational 
spring combined with a bending spring. In between two ends of the coupling, there is a 
parallel offset as shown in Figure 3. According to the equilibrium relations, the authors 
derive the misalignment transfer matrix in the following 
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      Neglect coupling inertia so that, LR MM = , LR VV = . LK  and BK  are linear and 
bending stiffness of the coupling ee t γφ +Ω= , eγ  is the phase relative to rotor’s 
reference. Note that the torsional vibration is not considered so that ee t γφ +Ω=  
retains all the times. eer δ+=   is dynamic offset, eδ  is linear displacement of the 
spring. The transfer matrix of a parallel offset coupling  yields to be 
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         Equation (5) is, for the first time derived, the transfer matrix of a coupling with 
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parallel misalignment. [ ]M  [14], similar to the others [15], is a coupling matrix links 
the left and right states, and { }C  is the misalignment vector. It will be seen that after 
multiplication to its right matrices, all components right to the misalignment contribute 
to the excitation. If there is no misalignment (e=0), { }C  vanishes and Eq. (5) simply 
represents a transfer matrix of a coupling. Now, assume a typical misaligned rotor 
system of a misaligned coupling between the kth and k+1th elements, as Figure 1.The 
overall transfer matrix containing unbalanced disk and misaligned shaft is derived to be  
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where LS 1}{  represents the left state of unit 1, { }R
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         Note that [ ] iT denotes the ith element’s transfer matrix, a shaft, a bearing, or a disk. 

][ uT is the overall transfer matrix yielded by the multiplication of all transfer matrices 
and ][ mT is the multiplication of the transfer matrices to the right of misalignment, i.e., 
from k+1th to the nth. Substituting the boundary conditions, a 9 × 9 matrix yields  
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Note that elements of ][ ′uT , }{ u  and ][ m are the degeneration of ][ uT and ][ mT  
matrices [15]. Simplify Eq. (11) and rearrange it , one can write it as  
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or 
1448181888 }{][}{}{][ ××××× ′⋅−−=′×′ CmuST Lu                                       (14) 

 
        There are two effects in the Eq. (14). On the right side, the first term is the 
unbalanced excitation and the second term is the misalignment excitation. Provided the 
misalignment is zero (e = 0), Eq. (14) yields an unbalanced response analysis. If the 
coupling stiffness KB and KL approach infinite, [ ]M  matrix becomes an identity matrix, 
representing a rigid coupling. 
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RESULTS, DISCUSSION AND CONCLUSIONS 

The rotor system consists of three bearings, four rigid disks, and seven-section flexible 
shaft as Figure 4 shows. The three bearings are assumed of the same constants in Y and 
Z direction. Figure 5 shows the FRF of the rotor with three different offsets. Refer to 
Figure 5 and Eqs. (8,9) it is realized that the coupling stiffness affects the rotor’s 
critical speeds but the offset acts just like an excitation. As seen, resonance occurs at 
the same critical speeds with no offset and FRF amplitude is proportional to the offset.  
        The mutual effects of shaft offset and disk unbalance are calculated and as shown 
in Figure 6. From the curves, it is seen the offset predominates rather than unbalance. 
Figure 7 shows the whirling orbits of the system with merely shaft offset (solid) and 
combine effects of unbalance and offset (dashed). Three plots correspond to (a) 
Ω< 1crΩ  (b) 1crΩ <Ω< 2crΩ (c) 2crΩ <Ω< 3crΩ . It is seen that at lower rotation speed, 
shaft offset predominates. The unbalance only slightly changes the orbit orientation. 
With the increase of rotational speeds, due to centrifugal force generated by disk 
unbalance, the orbit change significantly in both orientation and magnitude. It is further 
noted that in Figure 7(c), the two ends of the coupling whirl in opposite directions.  

The present research derived the transfer matrix for flexible coupling with parallel 
offset. The investigation reveals that coupling stiffness affects the critical speeds and 
the offset plays as an excitation. During the derivation of a rotating shaft transfer matrix, 
the authors found that the shaft’s boundary shears in Y-Z directions coupled together 
due to rotation. The coupling shears affected the most as the shaft was free at both ends. 
It could reduce the shaft’s first critical speed up to 50%.The derivation of TMM and 
numerical results revealed that misalignment induced lateral response of the same 
frequency as rotational speed (1×) and that was unlike most of the researches where 
multiple integers (n×) components were found. We believe that the reason of n× 
components disappearing in our derivation is due to the coupling’s torsional vibration 
was not considered. The coupling will transmit torque as well and if the torsional 
flexibility of the coupling is taken into account the driven shaft will fluctuate and it 
causes non-constant rotation. The non-constant speed in conjunction with the 
misalignment and unbalance will consequently generate n× frequencies of cyclic 
forces and moments on lateral vibration.  
        The combined effects of disk unbalance and shaft misalignment showed that shaft 
misalignment imposed much greater effect than the disk unbalance at most of 
rotational speeds. That means the shaft misalignment usually plays a dominating role. 
The effect of disk unbalance will be of the same significance as the rotor is at very high 
rotational speeds. 
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Figure 1 - Schematic diagram of a misaligned rotor in transfer matrix method 
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 Figure 2 – Natural frequencies of a rotating shaft with free-free boundary  
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(b) 1crΩ Ω 2crΩ< < (c) <2crΩ Ω 3crΩ<
Figure 7 -  Whirling orbits at different rotational speed due to mutual  
                   effect of shaft misalignment and disk unbalance  
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Figure 5 - FRF due to misalignment 
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