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Abstract
In a previous paper we propose quantum acoustical imaging based on the quantum effect of
phonons entanglement. It reduces the resolution limit toλ/N whereλ is the sound wavelength
andN is the number of phonons involved in the entanglement. In this paper we use a different
approach by harnessing on the property that entanglement is highly sensitive to a slight change
in the hamiltonian of the system which is attenuation in our case. We derive the perturbation
Hamiltonian density by taking account of the two phonons entanglement. The intensity of
the propagated ultrasonic wave in the solid is derived in terms of attenuation. Its sensitivity
dependence on the attenuation increases at an order of amplitude in proportion to the number
of phonons involved in entanglement. A quantum acoustical imaging system is proposed.

INTRODUCTION

In a previous paper [1] we propose quantum acoustical imaging based on the quantum effect of
phonons entanglement. It reduces the resolution limit toλ/N whereλ is the sound wavelength
andN is the number of phonons involved in the entanglement. In this paper we use a different
approach by harnessing on the extremely high sensitivity of entanglement to a slight change
in the hamiltonian of the system which is attenuation in our case.

SENSITIVITIES OF QUANTUM EFFECTS

The followings are some examples of the extremely high sensitivities of quantum effects:

1. Tunnelling Current



W. S. Gan

The quantum mechanically induced tunnelling current in solid state physics has ex-
tremely high sensitive dependence on the distance travelled. This sensitivity has been
harnessed in the design of the scanning tunnelling microscope (STM) which produces
images of sample surface up to atomic resolution.

2. Quantum Gyroscope

Entanglement between the quanta employed in the quantum gyroscope enhances the
accuracy. Here the atoms are entangled with each other. In this case, we insert into the
two input ports of the interferometer, the Fock state ofN particles in thej = 1, 2 input
mode, corresponding to two atoms entanglement. Such a quantum gyroscope ought to
be about108 times more sensitive to rotation than the standard one. Entanglement has
already led to an improvement in quantum clock synchronization.

3. Entanglement in Quantum Computer

The pairwise entanglement present in a quantum computer can be simulated as a dy-
namically localized system. Here the entanglement is exponentially sensitive to changes
in the Hamiltonian of the simulated system. Moreover, the entanglement is exponen-
tially sensitive to the logic position of the qubits chosen.

HARNESSING THE SENSITIVITY OF THE RESPONSE OF
ATTENUATION IN A PHONONS ENTANGLEMENT SYSTEM

We will begin with a quantum mechanical treatment of ultrasonic propagation in solids. Many
authors [2]-[5] have considered the absorption of ultrasonic waves in an ideal crystal as a
result of the sound quanta interacting via the anharmonic terms of the Hamiltonian with the
lattice vibration quanta. In this paper, we will start with the consideration of three-phonon
interactions and extend it to the case of two phonons in entanglement. With the advent of
experimental techniques, it is now possible to study three-phonon interactions in detail. This
is done by experimentally generating two noncollinear beams of ultrasonic phonons and by
standard experimental procedures, detecting the phonon beam created by the interaction of
the initial phonon beams [6].

Following Slonimskii [2]’s approach, the deformation of a solid under stress is de-
scribed by the componentsωα,β of the deformation tensor:

ωα,β =
1
2

(Uα,β + Uβ,α + Uγ,αUγ,β) (1)

Uα,β =
∂Uα

∂xβ
(2)

whereUα is the displacement of a point in thexα direction, and the Einsteinian notation is
used, i.e. repeated indices denote a summation over those indices. In terms of the deformation
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tensor, the elastic energy densityH of an isotropic solid is written as [7]

H = µω2
α,β + (

1
2
K − 1

3
µ)ω2

α,α +
1
3
Aωα,βωβ,γωγ,α + Bω2

α,βωγ,γ +
1
2
CW 3

α,α (3)

whereµ is the modulus of rigidity,K is the modulus of compression andA,B, C are the
third-order elastic constants.

Define two new tensors:

Uα,β =
1
2
(Uα,β + Uβ,α)

Vα,β =
1
2
(Uα,β − Uβ,α) (4)

the Hamiltonian density can be written as a sum of two Hamiltonian densities:

H0 = µU2
α,β + (

1
2
K − 1

3
µ)U2

α,α (5)

H′ = 1
3
CU3

α,α + (B +
1
2
K − 1

3
µ)U2

α,βUγ,γ + (
1
3
A + µ)Uα,βUβ,γUγ,α

− (
1
2
K − 1

3
µ)Uγ,γVα,βVβ,α − µUα,βVβ,γVγ,α (6)

where the symmetry properties ofUα,β andVα,β have been used. Using time-dependent per-
turbation theory,H0 is the unperturbed Hamiltonian density, andH′ is the perturbation Hamil-
tonian density which produces nonzero probabilities for transitions between available phonon
states.

In general, the displacement vector U
¯
(r
¯
) is the sum of the displacement vectors associ-

ated with each harmonic wave:

U
¯
(r
¯
) =

3∑

n=1

en(aneiKn·r + a∗ne−iKn·r) (7)

whereen is a unit vector in the direction of polarization,an is the amplitude of the nth phonon,
and K

¯n is the polarization vector. In quantum theory, the amplitudes of Eq. (7) and the anni-
hilation and creation operators of the linear harmonic oscillator whose only nonzero matrix
elements are 〈

N ± 1
∣∣∣∣
(

a∗

a

)∣∣∣∣ N

〉
=

[
h̄

2mω

(
N + 1

N

)]
1
2
e±iωt (8)

whereN is the initial number of phonons,h̄ω is the phonon energy,t is the time, andm is the
mass of the volume of interactionV .

The matrix elements of the componentsUα,β andVα,β are obtained by differentiating
the displacement components:

〈N ± 1 |Uα,β|N〉 = ∓ i

2
e∓iK·r(eαKβ + eβKα)

〈
N ± 1

∣∣∣∣
(

a∗

a

)∣∣∣∣N

〉
(9)

〈N ± 1 |Vα,β|N〉 = ∓ i

2
e∓iK·r(eαKβ − eβKα)

〈
N ± 1

∣∣∣∣
(

a∗

a

)∣∣∣∣N

〉
(10)
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Assuming that the initial phonons interact for a sufficiently long time, the transition
probability (the rate of occurrence of a process per unit time)P between the initiali and final
f states is given by [8]

P =
2π

h̄
H′2ifDf (εi) (11)

whereεi is the energy of the initial state andDf (εi) is the density of final states aboutεi. The
perturbing HamiltonianH′ is obtained by integrating the perturbing Hamiltonian density over
the volume of interaction.

Envisioning a classical elastic wave as being an ideally dense homogeneous beam of
phonons, the beam intensity is given by

In =
1
2
103ρCnω2

nX2
n = 103h̄Cnωnηn (12)

whereCn is the phonon speed,ηn is the phonon density, and the103 factor is the conversion
factor from the mks to the cgs units used in this paper. Eq. (12) is the classical expression
whereXn is the displacement amplitude.

Of all the interactions occurring between theη1 phonons and theη2 phonons, only
a small number, given by the transition probability, will generateη3 phonons. Each newly
createdη3 phonon may be visualized as the centre of a Huygens’ spherical wave which inter-
acts with adjacent Huygens waves to produce a diffraction pattern. Integrating the Huygens’
spherical waves over all angles, we obtain

X2
3 =

h̄P

2πr2ρω3C3
(13)

TWO PHONONS ENTANGLEMENT

The two phonons state is given by

|φ〉 = |φ1〉|φ2〉 (14)

So for two phonons entanglement, the matrix element ofH′if will be given by

〈N ± 1
∣∣H′if

∣∣ N〉 · 〈N ± 1
∣∣H′if

∣∣N〉 =
[〈N ± 1

∣∣H′if
∣∣N〉]2

(15)

Hence for two phonons entanglement, the beam intensityI3 will be given by

I3 =
1
2
103ρC3ω

2
3X

2
3

=
1
2
103ρC3ω

2
3

h̄P

2πr2ω3ρC3

=
1
2
103ρC3ω

2
3

h̄

2πr2ω3ρC3

(
2π

h̄

)
Df (εi) ·

[〈N ± 1
∣∣H′if

∣∣N〉]4

=
1
2
103ω2

3

Df (εi)
r2

· [〈N ± 1
∣∣H′if

∣∣N〉]4
(16)
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The attenuation is given by the Hamiltanian density which isH′if . So from Eqn. (16) we
realize that the intensity’s sensitivity dependence on the attenuation is two orders of magnitude
higherfor the case of two phonons entanglement and will be three orders of magnitude more
sensitive for the case of three phonons entanglement and so on.

DESIGN OF A QUANTUM ACOUSTICAL IMAGING SYSTEM
BASED ON THE SENSITIVITY DEPENDENCE ON ATTENUATION

The design will be based on the interference of two nonlinear beams of two entangled
phonons. Quantum-entangled phonons have been produced inKTaO3 [9]. The experimen-
tal setup will follow that of Ref 5 with modification of the ultrasound source to entangled
phonons source. Also the experimental system of Ref. 5 has to be extended to meet the re-
quirement of a 2D image scanning system, so that the image will be an attenuation image.
The diffraction tomography imaging system will be considered.

CONCLUSION

It is feasible to construct an imaging system which can harness on the high sensitivity of the
two-phonons entanglement to the attenuation of ultrasound propagation. A detailed calcula-
tion of the perturbed Hamiltonian which yields attenuation with the presence of two phonons
entanglement will be our next work.
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