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Abstract
Numerical simulation of the sound wave propagation with the sound absorption in the time

domain is discussed in this paper. To implement the sound absorption effect with complex
frequency dependency in the time domain such as the relaxation absorption in air or water, a
convolver using the digital filter is embedded in the element of the digital Huygens’ modeling
(DHM) or the transmission line matrix modeling (TLM). Some numerical demonstrations are
made for the one-dimensional sound propagation in seawater.

INTRODUCTION

For the accurate numerical analysis for the sound propagation, the introduction of the sound
absorption is required in the numerical scheme. There are two main reasons of the sound
absorption; one is the viscosity of the medium, and another is the relaxation process of the
translational and the rotational molecular motion in the fluid [1]. The absorption coefficient
due to the viscosity is in proportion to square of frequency. This type of classical absorption
can be easily expressed in the wave equation. The expression of the sound absorption due to
the relaxation in the wave equation is however not so easy because the relaxation phenomena
show the complex frequency dependency.

There are two methods to implement the frequency dependent characteristics into the
numerical scheme in time domain such as FDTD method; one is the method using FFT and
inverse FFT in which the waveform is transformed into the frequency domain by FFT then
it is transformed into time domain by inverse FFT after the filtering process is performed.
Another is the method using a covolution technique in time domain. The method using FFT
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and inverse FFT is however unsuitable to the time domain scheme because it expends the
computation time.

In this paper, the convolution technique using the digital filter is applied to the digital
Huygens’ modeling (DHM) [2]-[4] or transmission line matrix modeling (TLM) [5], [6] in
order to implement the sound absorption with the frequency dependency. DHM is a physical
model in which the propagation and the scattering of waves are simulated as the sequences of
impulses scattering as Huygens’ principle states. The formulation of DHM is very simple be-
cause time and space are not explicitly appeared in the formulation due to the synchronization
between time and space. The digital equivalent circuit can be simply developed based on the
DHM. It is easy to implement the digital filter into DHM [3]. Some numerical demonstrations
are made for the one-dimensional sound propagation in seawater.

WAVE EQUATION WITH VELOCITY DISPERSION

The governing equations for the acoustic field with the velocity dispersion are given as follows
[7]

∂p

∂t
= −κ∇ · u− δ1

∂

∂t
∇ · u (1)

ρ0
∂u

∂t
= −∇p + δ2∇2u (2)

wherep is sound pressure,u is particle velocity vector,ρ0 is density andκ is bulk modulus,
respectively. Equation (1) is the continuity equation and (2) is the equation of motion.δ1 and
δ2 are respectively given as

δ1 = κ

(
1
cv
− 1

cp

)
(3)

δ2 = ζ +
4
3
η (4)

wherecv andcp are specific heat at constant volume and one at constant pressure, respectively,
ζ is bulk viscosity andη is shear viscosity, respectively. Eliminating the particle velocity from
equations (1) and (2), the wave equation for the sound pressure is derived as

(
1 +

δ1 + δ2

ρ0c2
0

∂

∂t

)
∇2p− 1

c2
0

∂2p

∂t2
= 0 (5)

wherec0 =
√

κ/ρ is sound velocity.
Under the assumption of the steady state sound propagation, the wave equation (5) is

transformed as
(

1 + jω
δ

ρ0c2
0

)
∇2P + k2P = 0 (6)
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Figure 1:Frequency characteristics of the absorption coefficient of seawater.

whereP is amplitude,ω is angular frequency,k = ω/c0 is wave number, andδ = δ1 + δ2.
Introducing the propagation constantβ, the Helmholtz equation (6) is transformed into

∇2P + β2P = 0 (7)

where β2 =
k2

1 + jω
δ

ρ0c2
0

(8)

Under the assumption ofδω/ρ0c
2
0 ¿ 1, the propagation constant for the wave propagating to

+x direction is approximately expressed as

β = k + jα = k + j
δω2

2ρ0c3
0

(9)

whereα is classical absorption coefficient. For an example, figure 1 shows the frequency char-
acteristics of the absorption coefficient of the seawater at 20◦C. The solid line indicates the
classical absorption characteristics due to the viscosity predicted by equation (9), which is in
proportion to the square of frequency. The dashed line indicates the characteristics including
the effect of relaxation, which are not so simple compared with the classical one. In the case
of time domain analysis such as FDTD, the introduction of the relaxation effect is not so easy.

DIGITAL HUYGENS’ MODEL (DHM) FOR ACOUSTIC FIELD

In the digital Huygens’ model, a three-dimensional minute acoustic field can be described
by a cubic element consisting of six transmission lines and a stub with length∆` which are
connected at the center node of the element as shown in figure 2. Each transmission line
or branch has the characteristic impedance ofZ0 = ρ0c0. The stub has the characteristic
impedance ofZ0/ξ whereξ is the normalized impedance and is non-reflectively terminated at
the other end. The non-reflective termination at the stub end means that the stub is terminated
with the characteristic impedance of the stub to match.
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Figure 2:Three dimensional DHM element with stub.

The particular feature of DHM is that the sequences of the impulses are traced in time
domain. When an input pulseP is applied to the branch 1 at the timet = n∆t where
n = 1, 2, · · · and∆t = ∆`/c0, the pulse is scattered at the node because of the impedance
discontinuity at the connecting node. So the impulse of amplitude−(4 + ξ)/(6 + ξ)P is re-
flected back to the incident branch 1 and the impulses of amplitude2/(6 + ξ)P are scattered
to the other five branches and the stub. The scattering matrix is thus given as




S1(n + 1)
S2(n + 1)
S3(n + 1)
S4(n + 1)
S5(n + 1)
S6(n + 1)
S7(n + 1)




= a




b 1 1 1 1 1 0
1 b 1 1 1 1 0
1 1 b 1 1 1 0
1 1 1 b 1 1 0
1 1 1 1 b 1 0
1 1 1 1 1 b 0
1 1 1 1 1 1 0







P1(n)
P2(n)
P3(n)
P4(n)
P5(n)
P6(n)
P7(n)




(10)

whereP andS are incident and scattered pulses, subscripts indicate the number of the branch
or stub, anda = 2/(6 + ξ) and b = −(2 + ξ/2). The pulse scattered to the stub is not
reflected back into the node because of the non-reflective termination, which expresses the
propagation loss. The scattered pulses then become the input pulses to the adjacent elements.
The sequence of this process creates the propagation of the waves that corresponds to the
Huygens’ principle, as the field consists of the connection of the elements forming a network.
This process is easily implemented on a computer.

The amplitudePa(n) at the node is evaluated as

Pa(n) =
2

6 + ξ

6∑

i=1

Pi(n) (11)

The absorption coefficientα′ for an element is estimated from the equation (11) as

α′ = ln
6

6 + ξ
(12)

This equation shows that the absorption coefficient introduced by the stub is independent of
the frequency and can not be applied to the simulation of the sound propagation.
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EXPRESSION OF SOUND ABSORPION WITH DIGITAL FILTER

Equation (10) shows the impulse responses which can be expressed as a multi-port digital
filter as shown in figure 3. The stub is not appeared in the equivalent circuit because the pulse
scattered into the stub is not reflected back into the node. To express the sound absorption
with frequency dependency in DHM, a FIR digital filter is inserted after the multipliera in
the digital equivalent circuit. The filter coefficientsh corresponding to the frequency charac-
teristics of the sound absorption coefficient shown in figure 1 are calculated as shown in table
1. They are calculated by the least P-norm optimal design method provided by MATLAB fil-
ter design toolbox [8]. The filter order of 20 is required to express the characteristics due to
the relaxation, while the order of 10 is only required in the case of the classical absorption.
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Figure 3:Digital equivalent circuit for DHM.

NUMERICAL EXPERIMENTS

To verify the validity of the present scheme, the numerical examinations are made for the
sound propagation under the sea. A thin acoustic pipe of 1m in length is considered for the
one-dimensional model. The pipe is driven at one end by the velocity with the waveform of
the Gaussian shape and another is terminated by the sound absorber with the surface acoustic
impedance ofρ0c0. The pipe is divided into 5000 DHM elements whose element length is
∆` = 0.2mm. The time step∆t is chosen to be 76.98nS and the sound speedc0 is 1500m/s.

Figure 4 shows the calculated frequency characteristics of the absorption coefficient
with the stub forξ = 10−6. The flat characteristic is obtained which is predicted in equation
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Table 1:Filter coefficients of the FIR filter.

viscosity viscosity + relaxation
h0 0.999926989383839 h11 0.000001743005226 h0 0.999918199250317
h1 0.000087125979812 h12 0.000004625332505 h1 0.000092386365086
h2 -0.000021323612414 h13 -0.000002372229596 h2 -0.000010755621423
h3 0.000010894708465 h14 -0.000002393075925 h3 0.000001801494141
h4 -0.000004558063368 h15 0.000002660267627 h4 -0.000009651685625
h5 0.000003624315413 h16 0.000000182498428 h5 0.000013627816579
h6 -0.000005587720839 h17 -0.000001494547394 h6 -0.000003897009810
h7 0.000002499293207 h18 0.000000494887689 h7 -0.000008086409101
h8 0.000001693911703 h19 0.000000435189536 h8 0.000005163473544
h9 -0.000002933975550 h20 -0.000000057588599 h9 0.000006170243507
h10 0.000001599822954 h10 -0.000008892522503
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Figure 4:Frequency characteristics of the absorption coefficient with the stub.

(12), however it can not be applied to the simulation of the sound wave propagation. The
divergent error in the higher frequency region is observed due to the cut-off frequency of the
DHM network.

Figure 5 shows the calculated frequency characteristics of the classical absorption coef-
ficient due to the viscosity. The bold line indicates the characteristics calculated by DHM with
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Figure 5:Frequency characteristics of the classical absorption coefficient.
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the FIR filter and the dashed line the theoretical one predicted in equation (9). The characteris-
tics in proportion to square of frequency is realized in the frequency range of 50kHz∼1.5MHz.
The large error above 1.5MHz is again due to the cut-off frequency of the DHM network. The
thin line indicates the characteristic calculated by FDTD withδ = 2× 10−6. Both numerical
results well agree.

Figure 6 shows the propagation characteristics at 800 kHz. The solid line indicates the
characteristics calculated by DHM and the dashed line indicates the theoretical one at 800kHz
whereα = 0.0164 neper/m. The result calculated by DHM well agrees with the theoretical in
which the amplitude decreases exponentially.
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Figure 6:Propagation characteristics at 800kHz.

Figure 7 shows the frequency characteristics of the absorption coefficient includ-
ing the relaxation effect. The desired characteristics are realized in the frequency range of
50kHz∼1.5MHz. It is found that the arbitrary frequency characteristics can be included by
the use of the digital filter.
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Figure 7:Frequency characteristics of the absorption coefficient including the relaxation effect
with FIR filter.

CONCLUSIONS

To implement the frequency characteristics of the sound absorption coefficient in the sound
propagation, the digital filter is applied to the digital Huygens’ model (DHM). Some numer-
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ical demonstrations are made for the one-dimensional sound propagation in seawater. It is
found that the complex frequency characteristics such as the absorption coefficient including
the relaxation can be easily realized using the FIR filter.
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