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Abstract 
Viscoelastic damping materials are widely used to reduce noise and vibration of 
structures because of its low cost and easy implementation. To design the damped 
structures, the material property such as elastic modulus and loss factor is essential 
information. The four-parameter fractional derivative model well describes the 
nonlinear dynamic characteristics of the viscoelastic damping materials than 
conventional spring-dashpot models. However, the identification procedure of the four 
parameters is very time-consuming process. In this study, an efficient identification 
procedure of the four parameters is proposed by using an FE model and a 
gradient-based numerical search algorithm. The identification procedure goes two 
sequential steps to make measured frequency response functions (FRF) coincident with 
simulated FRFs: the first one is a peak alignment step and the second one is an 
amplitude adjustment step. A numerical example shows that the proposed method is 
efficient and robust in identifying the fractional-derivative-model parameters of 
viscoelastic materials.  
 
 

INTRODUCTION 
 
Damping materials are widely used to control passively sound and vibration problems 
of structures because of its low cost and easy implementation [1]. For example, on the 
body structure of passenger cars there are many damping sheets in order to reduce the 
vibration of panels. The similar cases are found in airplanes, ships and electric 
appliances. To design damping layer layout of structures, an efficient model of the 
damped structures is needed to describe the dynamic characteristics of viscoelastic 
damping materials. Nowadays, it is well known that the four-parameter fractional 
derivative model is one of the best models for viscoelastic damping materials [2]. 
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However, to obtain the four parameters of the fractional derivative model with 
conventional method, many tests are required at different frequencies and temperatures. 
Moreover, trial-and-error approach in data analysis makes the conventional parameter 
identification method very time-consuming. In this study, the authors propose an 
efficient and robust method to identify the parameters of the fractional derivative 
model of viscoelastic materials using a gradient-based numerical search algorithm. 

 
 

IDENTIFICATION OF THE MATERIAL PROPERTIES 
 
Fractional Derivative Model of Viscoelastic Materials 

Dynamic characteristics of the viscoelastic materials in frequency domain can be 
represented using the complex modulus such as:  

 εηε )(EEσ * i+== 1  (1)�

where 1−=i , σ   and ε are the Fourier transforms of stress and strain, respectively. 

E,E*  and η  are the complex modulus, the storage modulus and the loss factor, 
respectively. 

The complex modulus of viscoelastic materials is strongly dependent on 
temperature as well as frequency. However, we can predict the complex modulus at 
any temperatures using the shift factor (T)α  from the temperature-frequency 
superposition principle of viscoelastic materials. The shift factor is coupled with 
temperature through the Arrhenius equation such as [6]:  

 ( )011 TTd(T))log( 1 −=α       (2) 

where 1d  is a constant and 0T  is a reference temperature in degrees absolute. 
Considering the frequency variation of damping behavior as well as 

temperature variation, the complex modulus of the fractional derivative model in 
frequency domain can be written as follows [5, 6]. 
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Here, the four parameters 

110 c,a,a  and β  in equation 

(3) are identified by a suitable 
empirical way.  

It is well known that 
the four-parameter fractional 
derivative model is sufficient 

 
Figure 1. Oberst beam test configuration. 



ICSV13, July 2-6, 2006, Vienna, Austria 
 

to represent the real behavior of viscoelastic materials over a wide frequency range [6]. 
Therefore, identifying the six parameters of a viscoelastic material, the fractional 
derivative model can describe the dynamic characteristics of the viscoelastic materials 
over frequency and temperature variations. To estimate the fractional-derivative-model 
parameters of a real material with conventional methods, first many tests should be 
repeated until sufficient number of data are acquired at different frequencies and 
temperatures using, for example, Oberst beam test as shown in Fig. 1. Second, from 
these data, the coefficients of the fractional derivative model can be determined using a 
statistical data analysis technique that minimizes the mean square error between 
theoretical value and the tabulated value [6]. However, the statistical data analysis 
process is not so efficient because it includes trial-and-error steps, i.e., the shift factor is 
assumed and the mean square error is minimized. The trial-and-error step is repeated in 
turn until the global error value is obtained.  
 
A New Identification Method 

To develop a new estimation method of the fractional-derivative-model parameters, the 
authors start from an assumption that if a numerical model reproduces measured 
responses, then material properties used in the simulation model is the real material 
properties of the material. Then by minimizing the response difference between the 
measured and simulated FRFs, one can identify the material properties using a 
numerical search algorithm. The basic idea is adopted from the author’s previous work 
[5]. In the previous work, the identification index function that is zero at the true values 
and should be minimized for the identification is defined as follows. 

2
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( ) ( )
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simulated measured

i

g b x x df
=

= −∑∫   (4)         

Here, x , N and f  are frequency responses, number of responses and frequency, 

respectively.  Generally, gradient-based mathematical programming techniques are 
used to minimize the identification index because the gradient-based methods are the 

          
 

(a) Step 1 : Peak alignment step                     (b)Step 2 : Amplitude adjustment step 

Figure 2. The two-step identification procedure 
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(a) log( 0a ) vs. log( 1a )                 (b) log( 1c ) vs. β                  (c) log( 1d ) vs. 0T  

Figure 3. Contour surfaces of the first-step identification index 
 

   
(a) 1c  vs. 0T                         (b) 1a  vs. 1d                             (c) 0a  vs. β   

Figure 4. Contour surfaces of the second-step identification index 

most efficient although it may give a local minimum.  
The convex region of the identification index function should be as wide as 

possible in order that the identification procedure can give true values consistently 
regardless of initial values. In our previous work [5], the identification index defined in 
Eq. (4) sometimes fell into a local minimum if initial values far from the true values are 
given. To widen the stable region of the identification process, the authors introduce a 
new identification index and divide the process into two steps. The first step is a 
peak-alignment step and the second one is an amplitude-adjustment step as shown in 
Fig. 2. As a result, the identification index defined in Eq. (4) is split into two as follows: 
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whereλ  and M are resonance frequencies and the number of resonant peaks within a 
concerned frequency range, respectively. Then, minimizing the first identification 
index function with respect to the six parameters of the factional derivative model, the 
response differences will be very small. Therefore, the second step that is a 
minimization step of magnitude-difference between the measured and simulated FRFs, 
can be started from very close values to true values, which means that the identification 
process has little possibility of falling in a local minimum. Figures 3 and 4 show the 
contour surface of the identification index functions for a typical damped beam 
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problem according to the parameters normalized to the real values. As shown in the 
figures, the first identification index function is sufficiently smooth over the wide 
region, and the second identification index function is also very smooth near the true 
values.  

Summarizing the proposed method, the identification procedure consists of two 
sequential stages. In the first stage, the resonant-frequency differences are minimized 
by using the identification index with arbitrary assumed values, Eq. (5). In the second 
stage Eq. (6) is used as an identification index and the minimization process started 
from the results of the first stage gives best-fitted parameters of the fractional 
derivative model. It should be noted here that the number of measured responses must 
be larger than two because a single frequency response at a temperature does not 
contain sufficient information of dynamic behavior due to temperature variations. 
 
 

ANALYSIS MODEL OF DAMPED BEAM 
 

For the identification process a simulation model of the damped beam is necessary. In 
addition, the gradient information of the identification index function with respect to 
the unknown parameters should be provided in order to search minimum points using a 
numerical search algorithm. 
 
Finite element analysis of unconstrained damping layer beam 

From the Ross, Ungar and Kerwin (RUK)’s equation, the equivalent complex flexural 
rigidity, IE* , of the unconstrained plates is written in the form [7, 8]:  
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where 12 HHh = , *
1

*
2

* EEe =  and I  is the second area moment. From the RUK 
equation the equivalent storage modulus of the unconstrained beam is the real part of 
equation (7), and the equivalent loss factor can also be obtained from the imaginary 
part of equation (7).  

Introducing a finite beam element that has flexural displacements and rotations, 
one can obtain the equations of motion such as [4]: 

 Mx Kx F+ =&&  (8) 

where M  and K  are the global mass and stiffness matrices, respectively, and x  and 
F  are the displacement and force vectors, respectively. In addition, the 

complex-valued matrix K  satisfies the following relation: 

 ( )ηiKiKKK r +=+= 1ir  (9) 
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where the subscripts r and i mean the real and imaginary parts, respectively. Assuming 
a harmonic motion of the system, the corresponding real eigenvalue problem can be 
written as: 

 MyyK r ς=  (10) 

where y  is the eigenvector and )f)(( 2πως 22 ==  is the eigenvalue. The eigenvalue 
problem of equation (10) is nonlinear and the iteration procedure is summarized well in 
Ref [4]. 

The modal superposition principle gives an expression of harmonic responses 
in vibration problems and the displacement of the damped structure can be written as:  
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Here, m  is the number of mode, ky  the k-th eigenvector, and ka  the k-th modal 

coordinate. kη  is the loss factor of  k-th mode and defined by energy ratio as [8]: 
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where n is the number of finite elements, ejη  is the loss factor of the j-th element, ejU  

is the strain energy of the j-th finite element, and U is the total strain energy. In this 
study, the real eigenvectors will be used to evaluate the loss factor. 
 
Parameter Sensitivity Analysis 

To identify the six-parameters of the fractional derivative model using the 
gradient-based algorithms, the sensitivity analysis for the identification indexes are 
needed. The parameter sensitivity information can be obtained analytically by 
differentiating the identification index expressions with respect to the 
fractional-derivative-model parameters. The results sensitivity equation consists of 
eigenvalue and eigenvector sensitivities and derivative expression of the complex 
modulus represented by the fractional derivative model. The details of the parameter 
sensitivity analysis method can be found in Ref [3] and will not be repeated here for 
lack of space.  
 
 

NUMERICAL EXAMPLES 
 

To validate the identification procedure, a numerical experiment is introduced. A 
known viscoelastic damping material, LD-400 [6], is bonded on an aluminum beam. 
The beam is modeled by 20 finite elements with equivalent stiffness and the point 
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receptance frequency responses at the free end point of the beam are calculated by the 
FE model. In this study, the FRFs calculated from the FE model with the true material 
parameters are used as the reference frequency responses for the identification problem. 
The reference FRFs are calculated at two difference temperatures, i.e., 20 °C and 80 
°C .  

The six parameters of LD-400 are identified by the proposed method. To check 
the correctness of the gradient information, the parameter sensitivity calculated by the 
analytic formula is compared with that of finite difference method as shown in Figure 5. 
The calculated parameter sensitivity information is plugged into optimization software, 
DOT [9], to solve the inverse problem. Table 1 shows the identification results with the 
two-stage method compared with one-step strategy. One can see in Table 1 that the 
proposed method is very efficient than the one-step method. Next, to verify the 
robustness of the proposed method with respect to initial values, the identification 
process is repeated with different initial values from -2 to +2 orders of magnitude to the 
true values except parameter β . The order of fractional derivative, β , is always 

Table 1. Identification Results 

Ratio to the true values 
(%) 

 Results 
 
 
 

Method 

No. 
of 

iter 
0a  a1 c1  β  d1 0t  

One step 152 100 100 100 98 100 100 

1st  23 99 100 89 98 100 97 Two-  
step 2nd  41 100 100 100 99 100 100 

 
Figure 5. Parameter sensitivity w.r.t. 

0a compared with that of finite 

difference method  

Table 2. Identification results started from P-multiple values of the true values 
 

(True Value/ Identified Value)×100 [%] 
Initial Values 

P=0.01 P=0.1 P=10. P=100. P=random P= 10±  

Para. 
True 

Value 1st 2nd 1st 2nd 1st 2nd 1st 2nd  1st  2nd  1st  2nd  

0a  338.2 99.93 100.3 100.1 100.1 101.8 99.99 100.0 - 98.27 99.99 100.0 100.0 

1a  2485 100.0 100.0 100.2 100.0 99.19 100.0 101.9 - 100.8 100.0 100.8 100.0 

1c  0.12 103.5 100.0 112.5 100.0 575.0 100.8 9957. - 77.96 100.8 88.95 100.0 

1d  12222 100.6 99.85 101.4 99.79 99.97 100.0 999.8 - 100.0 100.0 90.02 99.79 

β  0.47 99.99 100.0 100.0 100.0 99.76 99.99 106.3 - 100.2 99.99 100.2 99.99 

0T  15.6 99.43 100.0 103.2 100.5 100.7 100.0 9943. - 99.32 100.0 100.6 100.0 
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assumed as 0.5 initially.  Table 2 shows the identified values. It is shown in Table 2 that 
the proposed method can identify the unknown material properties even with very 
rough initial assumptions. In addition, it should be noted that the possibility to reach on 
the true values is higher when started from smaller values to the true values than when 
started from larger values. Therefore, if the difference of response could not be 
minimized with an initial value, we should restart with smaller values than the current 
initial assumption in order to reach the true values. 

 
CONCLUSIONS 

 
An efficient identification method of material parameters represented by the fractional 
derivative model is proposed using a gradient-based optimization technique. To 
identify the fractional-derivative-model parameters, the Oberst beam coated on one 
side by a viscoelastic material is modeled by finite beam elements. The elastic modulus 
and loss factors of the equivalent beam elements are obtained from Ross, Ungar and 
Kerwin’s equation and the complex modulus expression of the fractional derivative 
model of the viscoelastic material. Then the frequency response functions on the same 
points with the measured one are calculated with assumed fractional-derivative-model 
parameters. The differences between the measured and the calculated FRFs are 
minimized by using a gradient-based optimization algorithm to identify the real values 
of the parameters. For efficient search iteration, the analytic gradient information is 
used. The difference minimization procedure consists of the peak-alignment stage and 
amplitude adjustment stage. Numerical experiments show that the proposed method 
accurately identifies the fractional-derivative-model parameters of viscoelastic 
materials even with a rough initial assumption of the parameters. 
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