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Abstract 
A new method called the interval factor method for determining the natural frequencies and 
modeshapes of truss structures with bounded uncertain parameters is presented in this paper. 
Using the interval factor method, the structural material parameters and geometric dimensions 
can be considered as interval variables, in which a structural parameter can be expressed as its 
mean value multiplied by its interval factor. Computational expressions for the lower and upper 
bounds and mean value of the natural frequencies and modeshapes are derived using the Rayleigh 
quotient. The influences of the uncertainties of the structural parameters on the dynamic 
characteristics of truss structures are investigated. The main advantage of using the interval factor 
method is that the effect of uncertainty of any individual structural parameter on the dynamic 
characteristics can be easily examined. 

INTRODUCTION 

The natural frequency and mode shape analysis of structures with uncertain parameters is 
a very significant research field in engineering [1,2]. In most practical engineering cases, 
structures have uncertainty in their parameters arising from materials defects, 
manufacturing tolerances and variation in operating conditions.  

The interval analysis method appeared in 1966 [3]. Moore [4] and Alefeld [5] have 
done the pioneering work, where they established the basic theory for the interval 
analysis and discussed the interval operations and its application. Recently, Chen et al. 
[6,7] and Qiu and Wang [8] have conducted eigenvalue analysis of structures with 
bounded uncertain parameters using interval perturbation method (IPM). In perturbation 
methods, the uncertainty of all the structural parameters are expressed as small 
parameters in the structural mass and stiffness matrices. These small parameters are not 
interval variables, but simply small values. Therefore, it is very difficult to investigate the 
effect of the uncertainty of the individual parameters on the natural frequencies by their 
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method. In addition, IPM does not necessarily yield a conservative approximation, as the 
effect of neglecting the higher order terms is unpredictable. Furthermore, in order to 
safely remove the higher order terms, IPM is only applicable to analyses with small 
intervals [1]. 

In this paper, the free vibrational characteristics of a dynamic structure with 
uncertainty in its parameters is investigated, using a new method called the Interval 
Factor Method (IFM). Truss structures are used to illustrate examples of this method, in 
which the Young’s modulus, mass density, bar’s length and cross-sectional area are 
considered as interval variables. The procedure of the IFM is as follows. Firstly, a 
structural parameter is expressed as an interval factor multiplied by the mean value of this 
parameter. Secondly, the structural mass and stiffness matrices are respectively expressed 
as interval factors of the parameters multiplied by their deterministic values. Finally, 
using Rayleigh’s quotient, the natural frequencies and modeshapes can be expressed as 
functions of these interval factors. Therefore, the effect of the uncertainty of any of the 
individual structural parameters on the natural frequencies and corresponding 
modeshapes can be easily observed. 

INTERVAL FACTOR 

Assume that )(RI  denotes the sets of all closed real interval numbers. ],[ ulI xxX =  is a 
member of )(RI , where lx  and ux  denote the lower and upper values of x , respectively. 

IX can be usually written in the following form 
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where x  and xΔ  denote the mean value of IX and the uncertainty in ,IX  respectively. 
Hence, an arbitrary interval ],[ ulI xxX =  can be written as the sum of its mean value and 
its uncertain interval ],[ xxX I ΔΔ−=Δ  
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Equation (2) can also be expressed as 
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Substituting equation (4) into equation (3) yields 
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xXX I
f
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Since x  is a deterministic value and the uncertainty of IX  is described by I
fX ,  I

fX  is 

named as the interval factor of IX  in this study and can be easily obtained by the 
following expressions: 
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where fx  denotes the mean value of I

fX  and fxΔ  denotes the uncertainty in I
fX . fxΔ  

also denotes the interval ratio of IX , corresponding to the ratio of the maximum 
uncertainty in IX  to its mean value. 

INTERVAL NATURAL FREQUENC Y AND MODE SHAPE ANALYSIS 

Suppose that there are n  elements in the truss structure under consideration. The mass 
matrix [ ]M  and stiffness matrix [ ]K  of the truss structure in global coordinates can be 
respectively expressed as 
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where [ ]eM  is the mass matrix of the eth element, [ ]eK  is the stiffness matrix of the eth 
element. eE , eA , eL  and eρ  are the Young’s modulus, cross-sectional area, length and 
mass density respectively of the eth element. [ ]I  is a 6th order identity matrix, [ ]G  is a 

66×  matrix ,where 14411 == gg , 14114 −== gg , and all other elements of [ ]G  are equal 
to zero [9]. [ ]eT  is a transformation matrix that translates the local coordinates of the eth 

element to global coordinates [9], and [ ]TeT  is its transpose. 
In the following analysis, we consider the material parameters ( eρ , eE ) and 

geometric dimensions ( eA , eL ) to simultaneously be members of )(RI , that is, they are all 
interval variables. Since the bars of the truss structure are of the same material, and all 
elements are manufactured in a similar way to each other, it is assumed that the interval 
ratio xx /Δ  (ratio of the maximum uncertainty to the mean value) of a given parameter for 
each element are the same. For example, for the Young’s modulus, we have 

.//...// 2211 EEEEEEEE nn Δ=Δ==Δ=Δ The Young’s modulus I
eE , mass density I

eρ , 



W. Gao and N.J. Kessissoglou 

cross-sectional area I
eA and length I

eL  of the each element can respectively be expressed 
as interval variables by: 
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where I

fE , I
fρ , I

fA  and I
fL  are the interval factors of I

eE , I
eρ , I

eA  and I
eL , respectively, 

and eE , eρ , eA  and eL  are mean values of I
eE , I

eρ , I
eA  and I

eL , respectively. By means 
of equation (6), the interval ratio expressions for the Young’s modulus, density, 
cross-sectional area and length can be respectively expressed as 
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where ,fEΔ  fρΔ , fAΔ  and fLΔ  are the interval ratios of I

eE , I
eρ , I

eA  and I
eL , 

respectively.  
From equation (7), the mass matrix of the eth element can be easily obtained in terms 

of its interval variables by 
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where [ ]det

eM  is the deterministic part of mass matrix [ ]IeM . It should be noted that 

[ ]det
eM  becomes the mean value of [ ]IM  when only one of structural parameters is 

interval variable. Equation (11) shows that the mass matrix [ ]IeM  can be divided into the 
product of two parts, corresponding to the interval factors I

fρ , I
fA , I

fL  and the 

deterministic matrix [ ]det
eM . Constructing the deterministic matrix [ ]det

eM  is the same as 
constructing the mass matrix in equation (7) for the eth element, and taking the parameters 
as e

I
e ρρ = , e

I
e AA =  and e

I
e LL = . It is important to note that the mass matrix of the eth 

element needs to be expanded before assemblage. [ ]IM  can now be written as: 
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where [ ]detM  is the deterministic part of the mass matrix [ ]IM . 
 

Similarly, the stiffness matrix can also be expressed in terms of its interval variables 
by: 
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where [ ]det
eK  and [ ]detK  are the deterministic part of [ ]IeK  and [ ]IK , respectively. 

 
Suppose that jth order natural frequency and modeshape of the structure are denoted 

I
jω and I

j}{φ , respectively. Using the interval factor method, I
jω and I

j}{φ  can be 
written as 
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where det

jω  and det}{ jφ  are the deterministic parts of I
jω  and I

j}{φ , respectively. It is 
important to note that the deterministic components do not correspond to the mean values. 

Substituting equations (12), (13) and (14) into Rayleigh’s quotient [9] yields 
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det
jK , det

jM , det
jω  are all deterministic quantities, corresponding to the jth order stiffness, 

mass and natural frequency of the structure when the parameters are e
I
e EE = , e

I
e ρρ = , 

e
I
e AA =  and e

I
e LL = . From detK and det

jM , det
jω can be obtained from a conventional 

finite element model. 
From equation (15), the interval values of I

jω  can be obtained, corresponding to 
the lower and upper bounds and the mean value of the jth natural frequency, which are 
respectively given by: 
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From modal analysis theory, the modal matrix [ ]φ  has the following orthogonal property: 
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Equations (19) and (20) can be written as 
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From equations (21) and (22), we can obtain the following expression for the interval 
factor for the modeshape: 
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Equation (23) states that the interval change ratio of each element in the modal matrix are 
equal. The interval values (lower bound, upper bound, mean value) of any elements I

ijφ  
in the modal matrix can be obtained according to the interval operations: 
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NUMERICAL EXAMPLE 

An 8-meter caliber antenna shown in Figure 1 is used as an example. The antenna is a 
96-node and 336-element space truss structure, with 12 elements. The mean values of the 
cross-sectional area of each element are given in Table 1. The structural parameters are all 
interval variables and 510058.2 ×=E (MPa), 31065.7 ×=ρ (kg/m3).  

In order to investigate the effect of the interval variables E, ρ , A  and L  on the 
structural dynamic characteristics, different combinations for the values of interval ratios 

fEΔ , fρΔ , fAΔ  and fLΔ  are examined. The computational results for the natural 
frequencies and modeshapes are given in Table 2 and Table 3, respectively.  

 
 

Table 1.  The mean value of cross-sectional area of each element. 

Element A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
Mean value (×10-4 m2) 3 4 6 2 3 3 6 2 3 4 6 2
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Figure 1– Quarter of 8-meter caliber antenna (unit: mm) 

 
Table 2.  Computational results for the natural frequencies. 

Model l
1ω  1ω  u

1ω  
Deterministic model 

fEΔ = fρΔ = fAΔ = fLΔ =0 22.818 22.818 22.818 

fEΔ =0.1 fρΔ = fAΔ = fLΔ =0 21.645 22.788 23.931 

fρΔ =0.1 fEΔ = fAΔ = fLΔ =0 21.754 22.904 24.052 

fAΔ =0.1 fEΔ = fρΔ = fLΔ =0 22.818 22.818 22.818 

fLΔ =0.1 fEΔ = fρΔ = fAΔ =0 20.741 23.047 25.353 

fEΔ = fρΔ = fAΔ = fLΔ =0.1 18.763 23.396 28.029 

fEΔ = fρΔ = fAΔ = fLΔ =0.2 15.525 25.228 34.932 

 
Table 3.  Computational results for the modeshapes.  

Model l
11φ  11φ  u

11φ  
Deterministic model 

fEΔ = fρΔ = fAΔ = fLΔ =0 2.1190 2.1190 2.1190 

fEΔ =0.1 fρΔ = fAΔ = fLΔ =0 2.1190 2.1190 2.1190 

fρΔ =0.1 fEΔ = fAΔ = fLΔ =0 2.0202 2.1269 2.2336 

fAΔ =0.1 fEΔ = fρΔ = fLΔ =0 2.0202 2.1269 2.2336 

fLΔ =0.1 fEΔ = fρΔ = fAΔ =0 2.0202 2.1269 2.2336 

fEΔ = fρΔ = fAΔ = fLΔ =0.1 1.8367 2.1592 2.4817 

fEΔ = fρΔ = fAΔ = fLΔ =0.2 1.6119 2.2866 2.9613 
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From Table 2 it can be observed that the effect of any uncertainty in the Young’s modulus, 
density and length on the variability in the natural frequencies are different. Uncertainty 
in the length of a bar produces the greatest effect on the variability in the natural 
frequencies, but any variability in its cross-sectional area does not affect the natural 
frequencies. From Table 3 it can be observed that any uncertainty in the density, 
cross-sectional area and length of a bar produces the same effect on the change of the 
modeshapes. Variability in the Young’s modulus does not have any effect on the 
modeshapes. Results show that when all the structural parameters have uncertainty in 
their values, the variability in the free vibrational characteristics of the structure is 
considerably greater than when only one of the parameters possesses uncertainty. 

CONCLUSIONS 

In this paper, the effect of uncertainty in the material parameters and dimensions of the 
bars in a truss structure on the variability in the free vibrational characteristics of the 
structure is presented using a new technique called the interval factor method. With this 
method, the lower bound, upper bound and mean values of the natural frequencies and 
modeshapes were obtained. 
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