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Abstract 
Complex components may be modelled in various ways. However when a system is 
made up of many complex components some methods of modelling are very 
inefficient and their accuracy also becomes questionable. A systems approach has the 
advantage that each component may be modelled in the most appropriate way and 
then the models of the components may be assembled to produce a model of the 
complex system. As an illustration of this approach this paper presents a discussion 
of the various components involved in powertrain dynamics. Powertrain systems are 
commonly modelled in the frequency domain and these techniques are well known 
and accepted. This paper however uses a Time Domain Receptance approach to 
model torsional vibration. The assumptions currently made in modelling such 
systems are discussed. Some recent experimental work is described that shows that 
some major assumptions that are commonly made are not valid. The most significant 
components are identified and the ways of modelling them described. Components 
included in the time domain model are the: engine, valvetrain, camshaft drive belt, 
clutch, continuous shafts, a gear pair and the tyres. Simulations demonstrate the 
potential of the modelling technique and the ease with which modifications to the 
model can be achieved. Finally the areas that require further investigation are 
identified.  

INTRODUCTION 

The systems approach based on the concept of receptances is well documented [1], 
and has been used to model dynamic systems.  A receptance is the transfer function in 
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the frequency domain relating the ratio of the resulting displacement of a system and 
the applied excitation on the system.  When a systems approach is applied, the system 
being modelled is first broken up into a number of sub-systems which can be 
modelled easily.  Then the receptances of the sub-systems are derived.  Because of 
some useful properties of the receptance, the receptance of the original system can be 
obtained by adding the receptances of the sub-systems in the appropriate manner.  
Thus when a systems approach is applied, the problem of modelling a system 
becomes one of modelling the interaction of the sub-systems into which the original 
system may be broken. 

During the process of adding the sub-systems only two sub-systems are added 
at a time.  After one addition the resultant system is considered to be one sub-system, 
and can be added with another sub-system.  The receptance of a system containing n 
sub-systems can be developed by repeating the process of adding two sub-systems n-
1 times.  The original system may be very complex, but the addition of two of its sub-
systems is always simple, and the number of sub-systems contained in the complex 
system only affects the times the simple addition is repeated.  Thus another advantage 
of the systems approach is that it is possible to write generalized computer programs 
modelling a large variety of systems. 

The time domain receptance was developed by Li [2], [3] on the basis of a 
numerical solution of the differential equations governing the motion of the systems.   
It is the purpose of this paper to outline the concepts of time domain receptances and 
to apply them to powertrain dynamics. 

THE TIME DOMAIN RECEPTANCE 

Consider the system B, shown at some time t, we wish to 
determine its state at time t+∆t.  If during the time 
interval ∆t there are mean forces  F1(∆t) and F2(∆t)  
acting at co-ordinates 1 and 2 respectively, then if the 
system may be considered linear over the time interval ∆t 
the following  equations are applicable, 

 

 
 x1(t + ∆t) = BI11P1(∆t) + BI12P2(∆t) + BII1                                 (1) 

 
  x2(t + ∆t) = BI21P1(∆t) + BI22P2(∆t) + BII2                                  (2) 

 
Where,     represent the values that BII1 and BII2  x1(t + ∆t) and x2(t + ∆t)  would have 
attained if there had been no external forces.  They correspond to complimentary 
functions and depend on the state at time t.   relate the 
responses to the impulse magnitudes alone with no initial displacements or velocities 
and correspond to particular integrals.  Note that for a linear system . 

 BI11, BI12, BI21 and  BI22

 BI12 = BI21
 

Excitation at a Remote Coordinate 
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Figure 1 System addition 

 
Excitation at a remote coordinate is when the  excitation  is applied at a co-ordinate 
other than that at which two systems are joined.  The excitation may be a force or 
torque and the response a displacement or rotation.   Consider system A as shown in 
figure 1 that has two sub-systems connected at coordinate 2, and is subject to an 
excitation P1(∆t) at coordinate 1 while the response of A is measured at coordinate 3.  
Thus the addition, excitation and response are at different coordinates.  By dividing 
system A at coordinate 1 as shown in figure 1 yields the equation of compatibility of 
displacements 

2 2 2( ) ( ) ( )b cx t t x t t x t t+ ∆ = + ∆ = + ∆        (3) 
 

Equilibrium of the forces at the join requires 
 

2 2( ) ( ) 0b cP t P t∆ + ∆ =                                                    (4) 
            
and the equations for the displacements of sub-system B are 

 
  x1( t + ∆t) = P1(∆t)BI11 + Pb2(∆t)BI12 + BII1                                 (5) 

  xb2(t + ∆t) = P1(∆t)BI21 + Pb2(∆t)BI22 + BII2                               (6) 
 

and for sub-system B 
  x3(t + ∆t) = Pc2(∆t)CI32 + CII3                                       (7) 

  xc2(t + ∆t) = Pc2(∆t)CI22 + CII2                                      (8) 
           
Substituting  (6) and (8) in (3) and from (4)  Pc2(∆t) = −Pb2(∆t)  
 

  P1(∆t)BI21 + Pb2(∆t)BI22 + BII2 = −Pb2(∆t)CI22 + CII2  
 

  
∴P b2(∆t) =

−P1(∆t )BI21 − BII2 + CII2
BI22 + CI22

                                (9) 

Substituting in (8) 
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x1( t + ∆t) =

P1(∆t) BI11BI22 + BI11CI22 − BI12
2( )− BII2BI12 + CII2BI12

BI22 + CI22
+ BII1 

  x1(t + ∆t) = P1(∆t)AI11 + AII1 
where 

  
AI11 = BI11 −

BI12
2

BI22 + CI22
  and  

 
AII1 = BII1 +

BI12 CII2 − BII2( )
BI22 + CI22

 

similarly since  

  
x2(t + ∆t) = P1(∆t) BI21 −

BI21BI22
BI22 + CI22

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ +

CII2BI22 − BII2BI22
BI22 + CI22

+ BII2 

  x2(t + ∆t) = P1(∆t)AI21 + AII2 
where 

  
AI21 = BI21 −

BI21BI22
BI22 + CI22

   and   
 
AII2 =

BI22 CII2 − BII2( )
BI22 + CI22

+ BII2  

similarly  

  
x3(t + ∆t) =

P1(∆t)BI21CI32
BI22 + CI22

+
BII2CI32 − CII2CI32

BI22 + CI22
+ CII3 

  x3(t + ∆t) = P1(∆t)AI31 + AII3 
where 

   
AI31 =

BI21CI32
BI22 + CI22

   and   
 
AII3 =

CI32 BII2 − CII2( )
BI22 + CI22

+ CII3 

 
We now have the time domain receptance of system A.  Using the same approach we 
could now add another system and so on until the complete complex system is 
reached. At this stage a time increment is made and then the system is subdivided 
again while determining all the forces/torques at each join using equation (9).  The 
forces/torques on each side of each sub-system are then known and a time increment 
is made on each sub-system.  In this way using successive time increments 

The modelling of torsional vibration of power train dynamics in the time 
domain requires that the characteristics of the various components are known.  We 
have so far investigated, reciprocating engines, valve trains, drive belts, flexible 
couplings, gear boxes and tyres, (some examples include [4],[5],[6] and [7]).  The 
major areas of interest have been those that are significant but have previously been 
ignored.  Thus we have investigated friction effects in engines, are working on 
friction effects in valve trains and have begun investigations into the tyre/road 
stiffness and damping.  In a short paper such as this a simple example will suffice to 
illustrate the method and its possible applications. 

AN EXAMPLE 

Consider a simple model of a drivetrain that includes a single cylinder engine, prop 
shaft, differential, lay shafts, wheels and tyres plus the vehicle body.  
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Engine 
 
The engine is modelled as shown in figure 2. 
 

 
Figure 2. Free body diagrams of the piston and crank as identified by Hesterman [3]. 

 
Hesterman [3] determined the torque required to be applied to the crank so that it 
would have a given angular velocity and acceleration at any particular angular 
position. The equation obtained [3] was, 
 

 
( ) ( ) ( )

( )

1 2
2 ' . ,C

C

T I g Q t
I

θ θ θ
θ

θ
− − −

=
θ

                                 (10) 

where I(θ),  I' (θ), g(θ) and Q(t,θ)  may be found in [3]. 
We can determine the time domain receptance by using equation (10) for the 

engine as follows.  Let the piston loading term Q(t,θ)  represent the gas force on the 
piston applied at coordinate 1 and the angular rotation be coordinate 2.  Then we need 
to find    BI12,  BI22 and BII2 .  For  we need the situation where the response to 
the excitation alone is found.  In this case  

 BI12
 x2(t + ∆t) = P1(∆t)BI12.  Hence we put 

T=0 and    and on substituting in (10) obtain, Q(t,θ) = P1(∆t) =1.0
 

( ) ( )
( )

1 2
2 ' . 1.0C

C

I g
I

θ θ θ
θ

θ
− −

=
−

 
 

Any numerical method may now be used to obtain θC which is equal to    
and hence, 

x2(t + ∆t)

  
BI12 =

x2(t + ∆t)
P1(∆t)

=
x2(t + ∆t)

1.0
= θC (t + ∆t)
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It should be noted that    will not be constant.   BI12
  BI22 is found in a similar manner.  We use  x2(t + ∆t) = P2(∆t)BI22 and put 

 and   T2(∆t) = P2(∆t) =1.0 1( , ) ( ) 0Q t P tθ = ∆ = .  Substituting in (10) gives, 

( ) ( )
( )

1 2
21.0 ' . C

C

I g
I
θ θ θ

θ
θ

− −
=  

Any numerical method may now be used to obtain θC which is equal to    
and hence, 

x2(t + ∆t)

  
BI22 =

x2( t + ∆t)
P2(∆t)

=
x2( t + ∆t)

1.0
= θC( t + ∆t)  

Again it should be noted that    will not be constant.   BI12
Finally to find    we need the case where there is no excitation.  In this case 

. From (10) 
BII2

  x2(t + ∆t) = BII2
( ) ( )

( )

1 2
2 ' . C

C

I g
I

θ θ θ
θ

θ
− −

=  

Any numerical method may now be used to obtain θC which is equal to    
and hence we have   .  

x2(t + ∆t)
BII2

 
Drivetrain 

 
Figure 3  Drivetrain attached to the engine. 

 
The engine is coupled to a prop shaft, differential, lay shafts, wheels and tyres. These 
may be considered as a single system (figure 3) as it is relatively easy to model this 
system if the shafts are all considered rigid. 

The equation of motion for the prop-shaft is, 1 2 2 2I T nθ = − T

For each lay shaft and wheel the equation of motion is, 

                       (11) 
where n is the gear ratio in the differential and T is the torque on each lay shaft. 

2 2I n T Fθ = − R        (12) 

T2  , θ2  

T  , θw 

θw 

x 

c
k T  , θw 

I1 2nT  

TI2

F
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Wher

                           (13) 

e F is the force on the tyre and R is the tyre radius. 

For the vehicle the equation of motion is,      mtotal x
..

= 2F − cD x
.

Where mtotal  is the total mass of the vehicle coefficient. , and is the drag 
rema  act as 

the w

− x)                                        (14) 

Rearranging and manipulating these equations to eliminate T gives 

 cD
It ins to determine the force F.  The contact stiffness and damping
heel rotation is greater or less than that expected from the linear motion of the 

vehicle.  Thus 
... .

F = k(nRθ − x) + c(nRθ
 

2
2

2T nFR
2

1 22I n I
θ

−
=                             

+
                      (15) 

 

 
x
..

=
2F − cD x.

mtotal
                                                   (16) 

Using an identical approach to that used for the engine the time domain receptance 
may be found.  The two systems (the engine and drivetrain) may then be added.  For a 
small single cylinder engine mounted in a 'go-cart' and starting from rest the results 
obtained are shown in figures 4 and 5. 
 
 
 

 
Figure 4  Engine speed as a function off time 
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Figure 5  Vehicle speed as a function of time 

CONCLUSIONS 

The application of the systems approach to time domain modelling has been used 
utilizing the time domain receptance.  An example including an engine, drivetrain and 
including tyre contact deflections has been presented. In this simple model it was 
seen that the varying speed of the engine, which results from both the gas force and 
the varying inertia of the engine mechanism, couples to the speed of the vehicle. For a 
single cylinder engine this variation is quite large. The tyre stiffness and damping 
cause the form of the oscillation seen by the vehicle to change. Although the system 
was represented by addition of 2 sub-systems the model could easily be extended to 
include other powertrain components by further sub-system addition without 
complete re-derivation of the equations. It is this property that makes time domain 
receptance techniques so attractive for modelling complex systems.   
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