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Abstract 
This paper presents the vibration and the corresponding sound field analysis of a holed 
plate excited by a rotating sound source. The vibration characteristics of the holed plate 
are investigated by applying a layer of artificial “ectoplasm” on the entire plate 
including the holed area. Such an algorithm can avoid a non-unique problem with 
ill-conditioned mass and stiffness matrices. The external excitation on the plated is 
from a point sound source in a rotating motion. Rayleigh-Ritz method is performed for 
obtaining the equations of motion. Then, the dynamic responses can be determined. 
The radiated sound field, on the opposite side of the plate to the sound source, due to 
vibration of the baffled plate is found by using Rayleigh’s  integral. The diffraction field 
from sound wave propagating through the holes is also formulated. Total sound field is 
the combination of these two sound fields. Numerical results of the vibration responses 
of the plate and the associated sound field are showed and discussed.  

INTRODUCTION 

This manuscript investigates the dynamic characteristics of a holed plated subjected to 
a rotating simple sound source. Moreover, the corresponding sound pressure due to 
radiation of the vibrating plate and scattering through the holes is also studied. The 
holed plate is chosen as a simple model of a PC case while the rotating source 
represents the cooling fan. The results and the discussions of this research can give  
some design guidelines in the noise reduction aspect.  
References related to this topic are two journal papers by Beslin and Guyader [1, 2]. In 
their research, they suggested the method of applying “ectoplasm” for the vibration 
analysis of a holed plate. Some associated noise analysis was also presented [2].  
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FORMULATION OF THE HOLED PLATE  

Consider a simply-supported, baffled plate, given in Fig. 1 with several holes on it. For 
solving dynamic behaviors of a holed plate, a traditional method, such as Galerkin’s 
method, may yield non-positive definite mass and stiffness matrices [1]. In this 
research, a layer of ectoplasm of weak material is artificially covered on the entire plate 
including the holed area for the purpose of formulation [1,2]. The mechanical properties 
of the ectoplasm must satisfy 
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Here, ε%  is a small parameter, ρ  and D are the density (mass per unit area) and bending 
stiffness of the plate material, ectρ and ectD  are those of the ectoplasm. 

Hamilton’s principle 

The equations of motion are derived by using Hamilton’s principle and Rayleigh-Ritz 
method [3]. Hamilton’s principle can be stated as 
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Here, T represents the kinetic energy density of the composite plate, U represents the 
elastic potential energy density, F is the external loading, W is the transverse 
displacement of the plate.  The formulation is integrated over the entire area s of the 
composite plate. 

Equations of motion 

In Rayleigh-Ritz method, the transverse displacement of the beam is expressed in a 
linear combination form of 
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Here, nmw  is unknown and ω  is the vibrating frequency. The trial function is chosen as 
the mode shape of a solid plate written as 
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Substituting (4) into Hamilton’s principle (2) yield the governing equations of the 
composite plate written as 
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where nmpqK  and nmpqM  are constants [1].  
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A MOVING SIMPLE SOURCE 

Moving simple source  

The sound pressure on the plate due to a moving simple  source of strength ( ) j tQ t qe ω= , 
located at sr

r
(t), can be expressed in a form of [4] 
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Here, sr r r= −
r r

 is the distance from the receiving point to the source, Q is defined as 
the mass rate per unit time, and c is the sound speed.  From its definition, the function 
δ  must satisfy 
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In eq. (6), the retarded time *τ  can be solved from ( ) ( ) / 0g t r cτ τ τ= − − =  and 
/ 1rdg d Mτ = − . Here, Mach number is defined as ( ) /r sM n v c= ⋅

r r
 where n

r
 is the 

unit vector in the direction of ( *)r τ
r

  and sv
r

 is the source velocity. The sound pressure 
due to moving source therefore becomes [4] 
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where t actually depends on *τ . 

Rotating simple source  

The source considered in this manuscript is in a circular motion, in the xy  plane, with 
radius a, frequency Ω , and about the center point ( )0 0 0, ,x y z . Then, the sound 
pressure at r

r
 can be written as 
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where ( ) ( ) ( ){ }0 0 0cos * sin *r x x a i y y a j z kτ τ   = − + Ω + − + Ω + −   
rr rr . As discussed in the 

future section, * ( )tτ  actually approximates to a periodic function of  t with frequency 
Ω  . Therefore, the sound pressure on the plate can be expressed as a Fourier series in 
the following form 
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The coefficient l̂F  are given in reference [5] and sp is the area of the holed plate. 
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PLATE EXCITED BY THE ROTATING SOURCE 

The loading, on a baffled plate from a sound source, is called blocked pressure and is 
proven twice the sound pressure on the plate [6]. The governing equations, an 
extension of  eq. (5), therefore become 
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with sp the plate area not including the holes. The displacement of the holed plate is 
obtained by  
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SOUNG FIELD DUE TO THE VIBRATING HOLED PLATE 

The output sound pressure is calculated at a point on the opposite side of the plate to the 
sound source. The total sound field is the combination of the radiated and the scattering 
sound fields.  

Radiated sound field 

The radiated sound field can be obtained by Kirchhoff-Helmholtz integral [7] 
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where r
r  is a point in the sound field, and *r

r  is a point located on the holed plate. The 
Green’s function in the integral should be chosen as ( ) ( )

* *2 2 /(4 )jkRG r g r e Rπ−= = −
r r  by 

image source method for a baffled problem where g is the free field Green’s function [7] 
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one can reduce Kirchhoff-Helmholtz integral to Rayleigh’s integral given as 
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where ( , )pV x y  is the velocity amplitude of the holed plate obtained from (12).   

Scattering sound field 

Scattering field is consequent on sound pressure passing through the hole on the plate. 
Kirchhoff-Helmholtz integral (13) is again employed for the result with *r

r  a point 

located on the hole [7]. In the integral, the derivative 
( )*P r
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and ( )*P r
r  is directly obtained from the rotating source. Choosing Green’s function as 

( ) ( )G r g r=
r r  yields the scattering sound pressure. This concept is also referred as 

Fresnel’s theory of diffraction. 

NUMERICAL RESULTS AND DISCUSSIONS 

Consider a simply-supported aluminium plate with 0.1mb =  and 48 10 mh −= × .  The  
holes are distributed over the plate in a symmetric way as shown in Fig. 2.  

Retarded time 

The difference between the retarded time *τ  and time t are given in Fig. 3 and 4 for 
varying radius a and frequency Ω , respectively. Here, the source location is 

0 0 0( , , ) (0.05,0.05,0.03)x y z =  and T represents 2 /π Ω . From the numerical results, the 
time difference *t τ−  is small, and furthermore it is found nearly a periodic function of 
t with frequency Ω . Therefore, in eq. (10), the pressure on the plate from the rotating 
source is also a periodic function formulated by a Fourier series. From Fig. 3, larger 
rotating radius a gives larger time difference. From Fig. 4, varying the rotating 
frequency Ω  can only yield negligible effect on the time difference.  

Sound pressure on the plate 

Amplitudes of sound pressure due to the rotating source on different locations  are 
illustrated in Fig. 5. Here, pressure amplitudes are found periodic functions with 
frequency Ω . Note that the pressure amplitude on ( , ) (0.05,0.05)x y =  is constant 
since the center of the rotating source is exactly on top of this point. 

Displacement of the holed plate excited by the rotating source 

The displacement amplitudes of the plate are shown in Fig. 6 and Fig. 7 where 
2500Hz, 500Hz,ω = Ω =  9 holes, and total hole area 20.030 0.030m× . The displacement 

distribution is quite similar to the combination of mode shapes (2,3) and (3,2) (Fig 2) 
which have a common natural frequency 2523.7Hz  [5,9]. Figure 7 yields larger 
displacements, compared to Fig. 6, since a larger rotating radius  a gives more loading 
on the plate. 

Corresponding sound field 

Figures 8 and 9 present the scattering pressures Psh, for different hole areas, where the 
sound pressure is solved at the point *z  above the center of the plate. From the 
numerical results, number of holes does affect the scattering pressure probability 
because fewer holes with large area can reinforce the constructive interfering effect. 
Furthermore, large rotating radius a or hole area can increase the sound pressure.  
Figures 10 and 11 give the radiated pressures Psp. The amplitudes of the radiated 
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pressure is generally a function of the vibrating pattern of the plate, and the difference 
between the excitation frequency and its nearest natural frequency.  
Total sound field is the sum of the radiated and the scattering sound fields as shown in 
Fig. 12. In our cases, most contribution to the sound field comes from the scattering 
pressure. Large hole area and radius of rotating can enhance sound pressure.  

SUMMARY 

The dynamics of a holed plate, due to a rotating sound source, is studied by artificially 
applying “ectoplasm” on the plate. The sound field resulted from the sound source and 
the vibration plate is also investigated. The rotating effect of the source introduces a 
new time scale, retarded time, to the system. This, then, gives an additional harmonic 
frequency to the loading to the plate. The vibration amplitude of the holed plate is 
dependent on the rotating radius and the rotating frequency of the source as well as the 
hole arrangement of the plate. In our cases, most contribution to the sound field results 
from the scattering pressure although the hole area is less than the holed plate area. 
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Fig. 1 The holed plate and the ectoplasm                   Fig 2. Combined Mode shape of (2,3) & (3,2) 
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Fig 3. Difference between t and * ( 50Hz)τ Ω =         Fig 4. Difference between t and * ( 0.025m)aτ =  
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          Fig. 5 Sound pressures on the plate                   Fig. 6 Displacement of the plate ( 0.025m)a =  
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       Fig. 7 Displacement of the plate ( 0.05m)a =            Fig. 8 Scattering sound pressure 

                                                                                          (total hole area 20.030 0.030m× )  
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Fig. 9 Scattering sound pressure                              Fig. 10 Radiated sound pressure 

  (total hole area 20.060 0.060m× )                                (total hole area 20.030 0.030m× )  
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Fig. 11 Radiated sound pressure                                 Fig. 12 Total sound pressure 

(total hole area 20.060 0.060m× )    
 


