
Appliation of Optimized Compat Finite Di�ereneShemes on Uneven Grid to the Computation ofAousti Wave PropagationReima Iwatsu�1, Hideo Tsuru2, and Kunikazu Hirosawa2�1 Department of Mehanial Engineering, Tokyo Denki University2-2 Kanda, Chiyoda-ku Tokyo 101-8457, Japan2Nittobo Aousti Engineering Corporation1-21-10 Midori, Sumida-ku Tokyo 130-0021, Japaniwatsu�k.dendai.a.jp (e-mail address of lead author)AbstratCompat shemes and linear multi-step methods are applied to the wave equationwith an intention to extend the appliability of the onventional FDTD method toomplex geometries. Fourth-order ompat �nite di�erene sheme on unevenly spaedstaggered mesh is utilized for the spatial disretization. System of equations is inte-grated in time by using linear multi-step methods that use half-node arrangement intime. The oeÆients of these time stepping methods are hosen to assure appropriateauray for the ampli�ation fator and phase error over the frequeny of interestwhile the whole time integration yields a stable solution. Proposed method is ap-plied to several benhmark problems and the results show better resolution apabilityompared to the onventional method.INTRODUCTIONIt appears that numerial simulation of sound wave propagation in rooms is nowrealisti at least for low frequenies. Two methods are ommonly used for the analysesof room aoustis: boundary element method and �nite di�erene method. The lattermethod is easy to ode, and straightforward to obtain pressure distribution as timeprogresses. The ell entered �nite di�erene sheme of seond-order and the Leap-Frogmethod are ommonly used in the omputation in time domain. Combination of theseamazingly simple shemes does produe stable and moderately aurate solutions oftensuÆient for industrial use. This omfortable situation enounters diÆulty however,when we have to analyze rooms with non-parallel walls, desks and furniture, not to



R. Iwatsu, H. Tsuru, and K. Hirosawamention that reetive onditions on the material surfae are not exatly known.A remedy may be to use unevenly spaed grid points to model omplex boundaryshapes and to employ �nite di�erene shemes for uneven mesh. In the present report,ompat �nite di�erene shemes [4℄ extended to uneven grid spaing are utilized andlinear multi-step methods are tested for time marhing. The oeÆients of multi-stepmethods are optimized so as to maximize the auray limit and stability limit of thee�etive angular frequeny of the shemes.NUMERICAL METHODThe problem to be solved is the initial-boundary value problem of linear wave equationin three-dimensions. For the purpose of explanation, equations are written for salarvariables, however extension to more than two-dimensions is straightforward.ftt = H(f; t); f(x; t = 0) = f0; (1)where f is either the veloity of the uid or the pressure, H is the soure term 2fxx, is a onstant sound veloity, f0 is the initial value, and an appropriate boundaryonditions are imposed in addition. In the FDTD proedure, intermediate variable gis introdued and the above equation is integrated in a form of two separate advetionequations. ft = F (g; t); gt = G(f; t); (2)where the ouple f; g stands for the pressure and veloity or the veloity and pressure,the soure terms F = �gx, and G = �fx. In this form of equations, additionalinitial and boundary values are required for the new variable g. Naturally when thetwo equations are ombined, the wave equation is retrieved sine H � FG = GF .Spatial DisretizationFor the evaluation of �rst derivative, ompat �nite di�erene sheme for ell entereduneven mesh is used for inner grid points. Let us refer this sheme as CDuns(3,2).�f 0i�1 + f 0i + �f 0i+1 = a(fi+ 12 � fi� 12 ) + � (3)For the boundary points (at i = imin), either of the following shemes, A (eq.4) or B(eq.5) is used, depending on the loation of half-nodes.f 0i + �f 0i+1 = a(fi+ 12 � fi� 12 ) + b(fi+ 32 � fi� 12 ) + � (4)f 0i + ��f 0i+1 = �a(fi+ 32 � fi+ 12 ) + �b(fi+ 52 � fi+ 12 ) + � (5)CoeÆients of above shemes are numerially determined form given mesh intervals.For suÆiently smooth meshes, shemes CDuns(3,2), and the boundary shemes A,B are fourth-order and third-order respetively. When the grid spaing is uniform,CDuns(3,2) retrieves the Pad�e sheme.



ICSV13, July 2-6, 2006, Vienna, AustriaTime IntegrationFor the time integration of advetion equations, liner multi-step method of the follow-ing form (Ms) is used. fn+1 = fn + �t s�1Xj=0 bjFn+ 12�j + � (6)where � is the leading term of the error. When s = 3, by requiring seond-order,oeÆients are obtained as b1 = 2�2b0, b2 = b0�1 and the error � = �t224 (24b0�25)fttt.When s = 4, they are b1 = �3b0 + 73=24, b2 = 3b0 � 37=12, b3 = 25=24 � b0 and� = �t312 (12b0� 13)ftttt. It may be unneessary to note that for s = 3 and b0 = 1, timeintegration is redued to the Leap-Frog method. The value of parameter b0 will bedetermined later.After the �rst integration Ms, it is followed by the seond integration Mrgn+1 = gn +�t r�1Xk=0 kGn+ 12�k + �: (7)Equations (6) and (7) integrate the wave equation from time level n to n + 1fn+1 = 2fn � fn�1 + �t2 q�1Xl=0 dlHn�l + �: (8)where q = s + r � 1 and dl = Plj=0 bl�jj . If we refer the above method as M2q , itis obvious that M2r+s�1 � Mr �Ms. Stability and auray of M2q is analyzed in thefollowing. Sine analyses of M2q involves too many free parameters, only the ases,M23 �M3 �M1, M24 �M4 �M1 and M25 �M3 �M3 are treated in the present study.RESULTSIn the following, numerial error of CDuns(3,2) ombined with boundary shemes Aand B are estimated �rst for a sine wave. Then angular frequeny of the ompatshemes is analyzed for non-uniform mesh. Optimization of multi-step time integra-tion is desribed next, and �nally proposed method is applied to several benhmarkproblems.Estimation of spatial errorSine wave f(x) = sin(�x); � = � is hosen as a test funtion to estimate numerialerror of CDuns(3,2)+ boundary shemes A or B. By varying the number of mesh pointsn, average error and the maximum error in the �rst derivative are plotted as funtionsof n and x in Fig. 1 for a hyperboli tangent mesh. The fourth-order auray isatually realized and the maximum error always appears on the boundaries. Althoughboth boundary shemes A and B have same order of auray, maximum error of



R. Iwatsu, H. Tsuru, and K. Hirosawasheme A is smaller than B when n is large. Modest auray of 10�3 in the �rstderivative is ahieved when n � 1 � 8 for both ases A and B, i.e. ��x � 0:39. Thismeans that with this tolerane, approximately 8 points are neessary within a wavelength.For uniform mesh, CDuns(3,2) has a real angular frequeny. The angular fre-queny of CDuns(3,2) is plotted in Fig. 2 for a power low grid xi = ri to show thee�et of non-uniform mesh. Plots in Fig. 2 indiate that the hoie of r = 1:2 ausesa phase error of 2:5 � 10�2 for ��x � �. Analysis on the e�et of ratio of grid spaingr on the angular frequeny provides a guideline on how to distribute grid points.Optimization of Multi-Step MethodsMulti-step methods for advetion equation: The angular frequeny �! of multi-step methodsMs; s = 3; 4 (eq.6) is obtained as follows, by using the Laplae transformand assuming that f = 0 for t � 0.�!�t = 2sin(!�t2 )Ps�1j=0 bjeij!�t (9)Aording to [1℄, oeÆients of the methods are optimized by requiring that deviationin the angular frequeny is minimized over frequenies of interest,E1 = Z ��� ��Re(�!�t� !�t)2 + (1� �)Im(�!�t � !�t)2�d(!�t); dE1db0 = 0 (10)where � = 0:36 was used as in [1℄. By assuming � = 0:5 for s = 3 and � = �=2 fors = 4, the following values are obtained: b0 = 1:03340232 for s = 3, b0 = 1:0843831for s = 4. The Leap-Frog method M1 is a speial ase where Im(�!�t) = 0. Optimizedversion of M3 and M4 introdue a slight error in the imaginary part. In turn, theyattain more aurate real part over a wider range of angular frequeny than M1. Toobtain a better understanding, E1 is plotted as a funtion of b0 in Fig. 3 for s = 3. Asshown in the �gure, the optimal of b0 varies as � is varied. The value of � should behosen by onsidering the stability limit. In the present study, it was determined fromthe auray and stability limit of the ombined method, M2q . Combined multi-stepmethods for wave equation are now desribed in the following.Multi-step methods for wave equation: The stability of time integration methodsM2q is analyzed by onsidering the ampli�ation fator of the methods. Numerialampli�ation fator of M2q is ompared with the exat ampli�ation fator rexat =e�i!�t, rnumrexat = 2ei!�t � ei2!�t � (!�t)2 q�1Xl=0 dlei(l+1)!�t: (11)In aordane to the notation of [2℄, above ratio is denoted as re�iÆ, where r is theratio of ampli�ation fators and Æ the phase error. The stability limit is de�ned as



ICSV13, July 2-6, 2006, Vienna, Austriathe maximum angular frequeny !�t(= w in Figs. 3 and 4) where jrj � 1 is satis�edand denoted by a sign R in the �gures. Auray limit for the ampli�ation fator andphase error are de�ned as the maximum angular frequenies where jjrj � 1j � 10�3and jÆj � 10�3 holds. In Figs. 3 and 4, they are denoted as L and I respetively. Theresults are shown �rst in Fig. 3 (right) for M3. In Fig. 4, auray and stability limitfor M2q ; q = 3; 5 are shown as funtions of d0. Reommended ranges for the value ofd0 are 1:03 � d0 � 1:083, !�t � 0:4 for M23 , 1:04 � d0 � 1:135, !�t � 0:4 for M24and 1:28 � d0 � 1:37, !�t � 0:45 for M25 . In summary, it is on�rmed that Ms andMs �Mr are stable with respet to the previously obtained optimal values of b0.Benhmark ProblemsOne-dimensional wave propagation [3℄: The solution at t = 400 of ft + fx = 0where f(0) = 12exp��in(2) �x3�2� ; �20 � x � 450; �x = 1:0 was omputed byusing onventional method (= M1 � M1 ) and optimized M3 �M3 (Fig. 5). To seewhether multi-step methods improve the auray of numerial solutions, deviation ofnumerial solution from the exat solution dev2 =P jfn� fexatj2 versus b0 is plottedin Fig. 6. It is readily seen that error of multi-step methods are two-order of magnitudesmaller than the onventional method.Three-dimensional wave sattered by a sphere: Sound wave sattered by asphere is omputed and alulated pressure is ompared with the exat solution writtenin a form of in�nite series expansion. The radius of sphere is 0.2 (m) and the spherialshape is expressed by masking the orthogonal mesh. Sound soure is loated at apoint 1 (m) apart from the enter of the sphere. The average mesh spaing is 0.02(m) in all diretions and a total of 1013 grid points are used. Solutions are obtainedon both uniform and non-uniform meshes. For the non-uniform mesh, the minimumgrid spaing is 0.0083 (m). Disrete time interval is �xed at �t = 0:01 (mse). Soundfrequeny is hanged from 500 (Hz), 1000 (Hz) to 2000 (Hz). The omputed pressurein the frequeny domain is shown in Fig. 7 (upper left) in the unit of (dB) for theompat shemes ombined with multi-step method (M3 � M3 with b0 = 1:04 forboth veloity and pressure integration). It was noted that the maximum error in thenumerial solution by FTDT is 5 (dB), while the maximum error is dereased to 3(dB) when ED2 is replaed to CD4uns(3,2) (Fig. 7 upper right). Further replaementof M1 �M1 to M3 �M3 dereases 0.3 (dB) (Fig.7 lower). Thus improvement is observedfor optimized version of the multi-step method.SUMMARYCompat �nite di�erene shemes on ell entered uneven mesh and optimized multi-step methods are applied to the omputation of sound wave equation. Proposed meth-ods produed numerial solution of good quality for benhmark problems. As to thefuture plans, the following items will be treated.
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Figure 2: E�etive frequeny of CDuns(3,2) for non-uniform power-low mesh xi = ri;Left: real part, right: imaginary part
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Figure 7: Sound pressure distribution in the frequeny domain at 1000 (Hz) anddi�erene in p between FDTD and present (upper), �p (deviation from the exatsolution) shown in (dB) for FDTD + CDuns(3,2) and present method (lower)


