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tCompa
t s
hemes and linear multi-step methods are applied to the wave equationwith an intention to extend the appli
ability of the 
onventional FDTD method to
omplex geometries. Fourth-order 
ompa
t �nite di�eren
e s
heme on unevenly spa
edstaggered mesh is utilized for the spatial dis
retization. System of equations is inte-grated in time by using linear multi-step methods that use half-node arrangement intime. The 
oeÆ
ients of these time stepping methods are 
hosen to assure appropriatea

ura
y for the ampli�
ation fa
tor and phase error over the frequen
y of interestwhile the whole time integration yields a stable solution. Proposed method is ap-plied to several ben
hmark problems and the results show better resolution 
apability
ompared to the 
onventional method.INTRODUCTIONIt appears that numeri
al simulation of sound wave propagation in rooms is nowrealisti
 at least for low frequen
ies. Two methods are 
ommonly used for the analysesof room a
ousti
s: boundary element method and �nite di�eren
e method. The lattermethod is easy to 
ode, and straightforward to obtain pressure distribution as timeprogresses. The 
ell 
entered �nite di�eren
e s
heme of se
ond-order and the Leap-Frogmethod are 
ommonly used in the 
omputation in time domain. Combination of theseamazingly simple s
hemes does produ
e stable and moderately a

urate solutions oftensuÆ
ient for industrial use. This 
omfortable situation en
ounters diÆ
ulty however,when we have to analyze rooms with non-parallel walls, desks and furniture, not to
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e
tive 
onditions on the material surfa
e are not exa
tly known.A remedy may be to use unevenly spa
ed grid points to model 
omplex boundaryshapes and to employ �nite di�eren
e s
hemes for uneven mesh. In the present report,
ompa
t �nite di�eren
e s
hemes [4℄ extended to uneven grid spa
ing are utilized andlinear multi-step methods are tested for time mar
hing. The 
oeÆ
ients of multi-stepmethods are optimized so as to maximize the a

ura
y limit and stability limit of thee�e
tive angular frequen
y of the s
hemes.NUMERICAL METHODThe problem to be solved is the initial-boundary value problem of linear wave equationin three-dimensions. For the purpose of explanation, equations are written for s
alarvariables, however extension to more than two-dimensions is straightforward.ftt = H(f; t); f(x; t = 0) = f0; (1)where f is either the velo
ity of the 
uid or the pressure, H is the sour
e term 
2fxx,
 is a 
onstant sound velo
ity, f0 is the initial value, and an appropriate boundary
onditions are imposed in addition. In the FDTD pro
edure, intermediate variable gis introdu
ed and the above equation is integrated in a form of two separate adve
tionequations. ft = F (g; t); gt = G(f; t); (2)where the 
ouple f; g stands for the pressure and velo
ity or the velo
ity and pressure,the sour
e terms F = �
gx, and G = �
fx. In this form of equations, additionalinitial and boundary values are required for the new variable g. Naturally when thetwo equations are 
ombined, the wave equation is retrieved sin
e H � FG = GF .Spatial Dis
retizationFor the evaluation of �rst derivative, 
ompa
t �nite di�eren
e s
heme for 
ell 
entereduneven mesh is used for inner grid points. Let us refer this s
heme as CDuns(3,2).�f 0i�1 + f 0i + �f 0i+1 = a(fi+ 12 � fi� 12 ) + � (3)For the boundary points (at i = imin), either of the following s
hemes, A (eq.4) or B(eq.5) is used, depending on the lo
ation of half-nodes.f 0i + �f 0i+1 = a(fi+ 12 � fi� 12 ) + b(fi+ 32 � fi� 12 ) + � (4)f 0i + ��f 0i+1 = �a(fi+ 32 � fi+ 12 ) + �b(fi+ 52 � fi+ 12 ) + � (5)CoeÆ
ients of above s
hemes are numeri
ally determined form given mesh intervals.For suÆ
iently smooth meshes, s
hemes CDuns(3,2), and the boundary s
hemes A,B are fourth-order and third-order respe
tively. When the grid spa
ing is uniform,CDuns(3,2) retrieves the Pad�e s
heme.



ICSV13, July 2-6, 2006, Vienna, AustriaTime IntegrationFor the time integration of adve
tion equations, liner multi-step method of the follow-ing form (Ms) is used. fn+1 = fn + �t s�1Xj=0 bjFn+ 12�j + � (6)where � is the leading term of the error. When s = 3, by requiring se
ond-order,
oeÆ
ients are obtained as b1 = 2�2b0, b2 = b0�1 and the error � = �t224 (24b0�25)fttt.When s = 4, they are b1 = �3b0 + 73=24, b2 = 3b0 � 37=12, b3 = 25=24 � b0 and� = �t312 (12b0� 13)ftttt. It may be unne
essary to note that for s = 3 and b0 = 1, timeintegration is redu
ed to the Leap-Frog method. The value of parameter b0 will bedetermined later.After the �rst integration Ms, it is followed by the se
ond integration Mrgn+1 = gn +�t r�1Xk=0 
kGn+ 12�k + �: (7)Equations (6) and (7) integrate the wave equation from time level n to n + 1fn+1 = 2fn � fn�1 + �t2 q�1Xl=0 dlHn�l + �: (8)where q = s + r � 1 and dl = Plj=0 bl�j
j . If we refer the above method as M2q , itis obvious that M2r+s�1 � Mr �Ms. Stability and a

ura
y of M2q is analyzed in thefollowing. Sin
e analyses of M2q involves too many free parameters, only the 
ases,M23 �M3 �M1, M24 �M4 �M1 and M25 �M3 �M3 are treated in the present study.RESULTSIn the following, numeri
al error of CDuns(3,2) 
ombined with boundary s
hemes Aand B are estimated �rst for a sine wave. Then angular frequen
y of the 
ompa
ts
hemes is analyzed for non-uniform mesh. Optimization of multi-step time integra-tion is des
ribed next, and �nally proposed method is applied to several ben
hmarkproblems.Estimation of spatial errorSine wave f(x) = sin(�x); � = � is 
hosen as a test fun
tion to estimate numeri
alerror of CDuns(3,2)+ boundary s
hemes A or B. By varying the number of mesh pointsn, average error and the maximum error in the �rst derivative are plotted as fun
tionsof n and x in Fig. 1 for a hyperboli
 tangent mesh. The fourth-order a

ura
y isa
tually realized and the maximum error always appears on the boundaries. Althoughboth boundary s
hemes A and B have same order of a

ura
y, maximum error of
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heme A is smaller than B when n is large. Modest a

ura
y of 10�3 in the �rstderivative is a
hieved when n � 1 � 8 for both 
ases A and B, i.e. ��x � 0:39. Thismeans that with this toleran
e, approximately 8 points are ne
essary within a wavelength.For uniform mesh, CDuns(3,2) has a real angular frequen
y. The angular fre-quen
y of CDuns(3,2) is plotted in Fig. 2 for a power low grid xi = ri to show thee�e
t of non-uniform mesh. Plots in Fig. 2 indi
ate that the 
hoi
e of r = 1:2 
ausesa phase error of 2:5 � 10�2 for ��x � �. Analysis on the e�e
t of ratio of grid spa
ingr on the angular frequen
y provides a guideline on how to distribute grid points.Optimization of Multi-Step MethodsMulti-step methods for adve
tion equation: The angular frequen
y �! of multi-step methodsMs; s = 3; 4 (eq.6) is obtained as follows, by using the Lapla
e transformand assuming that f = 0 for t � 0.�!�t = 2sin(!�t2 )Ps�1j=0 bjeij!�t (9)A

ording to [1℄, 
oeÆ
ients of the methods are optimized by requiring that deviationin the angular frequen
y is minimized over frequen
ies of interest,E1 = Z ��� ��Re(�!�t� !�t)2 + (1� �)Im(�!�t � !�t)2�d(!�t); dE1db0 = 0 (10)where � = 0:36 was used as in [1℄. By assuming � = 0:5 for s = 3 and � = �=2 fors = 4, the following values are obtained: b0 = 1:03340232 for s = 3, b0 = 1:0843831for s = 4. The Leap-Frog method M1 is a spe
ial 
ase where Im(�!�t) = 0. Optimizedversion of M3 and M4 introdu
e a slight error in the imaginary part. In turn, theyattain more a

urate real part over a wider range of angular frequen
y than M1. Toobtain a better understanding, E1 is plotted as a fun
tion of b0 in Fig. 3 for s = 3. Asshown in the �gure, the optimal of b0 varies as � is varied. The value of � should be
hosen by 
onsidering the stability limit. In the present study, it was determined fromthe a

ura
y and stability limit of the 
ombined method, M2q . Combined multi-stepmethods for wave equation are now des
ribed in the following.Multi-step methods for wave equation: The stability of time integration methodsM2q is analyzed by 
onsidering the ampli�
ation fa
tor of the methods. Numeri
alampli�
ation fa
tor of M2q is 
ompared with the exa
t ampli�
ation fa
tor rexa
t =e�i!�t, rnumrexa
t = 2ei!�t � ei2!�t � (!�t)2 q�1Xl=0 dlei(l+1)!�t: (11)In a

ordan
e to the notation of [2℄, above ratio is denoted as re�iÆ, where r is theratio of ampli�
ation fa
tors and Æ the phase error. The stability limit is de�ned as
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y !�t(= w in Figs. 3 and 4) where jrj � 1 is satis�edand denoted by a sign R in the �gures. A

ura
y limit for the ampli�
ation fa
tor andphase error are de�ned as the maximum angular frequen
ies where jjrj � 1j � 10�3and jÆj � 10�3 holds. In Figs. 3 and 4, they are denoted as L and I respe
tively. Theresults are shown �rst in Fig. 3 (right) for M3. In Fig. 4, a

ura
y and stability limitfor M2q ; q = 3; 5 are shown as fun
tions of d0. Re
ommended ranges for the value ofd0 are 1:03 � d0 � 1:083, !�t � 0:4 for M23 , 1:04 � d0 � 1:135, !�t � 0:4 for M24and 1:28 � d0 � 1:37, !�t � 0:45 for M25 . In summary, it is 
on�rmed that Ms andMs �Mr are stable with respe
t to the previously obtained optimal values of b0.Ben
hmark ProblemsOne-dimensional wave propagation [3℄: The solution at t = 400 of ft + fx = 0where f(0) = 12exp��in(2) �x3�2� ; �20 � x � 450; �x = 1:0 was 
omputed byusing 
onventional method (= M1 � M1 ) and optimized M3 �M3 (Fig. 5). To seewhether multi-step methods improve the a

ura
y of numeri
al solutions, deviation ofnumeri
al solution from the exa
t solution dev2 =P jfn� fexa
tj2 versus b0 is plottedin Fig. 6. It is readily seen that error of multi-step methods are two-order of magnitudesmaller than the 
onventional method.Three-dimensional wave s
attered by a sphere: Sound wave s
attered by asphere is 
omputed and 
al
ulated pressure is 
ompared with the exa
t solution writtenin a form of in�nite series expansion. The radius of sphere is 0.2 (m) and the spheri
alshape is expressed by masking the orthogonal mesh. Sound sour
e is lo
ated at apoint 1 (m) apart from the 
enter of the sphere. The average mesh spa
ing is 0.02(m) in all dire
tions and a total of 1013 grid points are used. Solutions are obtainedon both uniform and non-uniform meshes. For the non-uniform mesh, the minimumgrid spa
ing is 0.0083 (m). Dis
rete time interval is �xed at �t = 0:01 (mse
). Soundfrequen
y is 
hanged from 500 (Hz), 1000 (Hz) to 2000 (Hz). The 
omputed pressurein the frequen
y domain is shown in Fig. 7 (upper left) in the unit of (dB) for the
ompa
t s
hemes 
ombined with multi-step method (M3 � M3 with b0 = 1:04 forboth velo
ity and pressure integration). It was noted that the maximum error in thenumeri
al solution by FTDT is 5 (dB), while the maximum error is de
reased to 3(dB) when ED2 is repla
ed to CD4uns(3,2) (Fig. 7 upper right). Further repla
ementof M1 �M1 to M3 �M3 de
reases 0.3 (dB) (Fig.7 lower). Thus improvement is observedfor optimized version of the multi-step method.SUMMARYCompa
t �nite di�eren
e s
hemes on 
ell 
entered uneven mesh and optimized multi-step methods are applied to the 
omputation of sound wave equation. Proposed meth-ods produ
ed numeri
al solution of good quality for ben
hmark problems. As to thefuture plans, the following items will be treated.
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ation of 
ompa
t s
heme whi
h uses four grid points on the right handside, i.e. CDuns(3,4) will be studied. By requiring fourth-order a

ura
y, one parame-ter is undetermined in the 
oeÆ
ients and this parameter is used to optimize the wavepropagation property of the s
heme for a given non-uniform mesh point distribution.In the present study, optimized parameter is proposed for one-parameter familyof three and four step methods Ms; s = 3; 4 for adve
tion equation and three and �vestep methods M2q ; q = 3; 5 for wave equation. It is now planned further to explore the
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Figure 2: E�e
tive frequen
y of CDuns(3,2) for non-uniform power-low mesh xi = ri;Left: real part, right: imaginary part
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Figure 7: Sound pressure distribution in the frequen
y domain at 1000 (Hz) anddi�eren
e in p between FDTD and present (upper), �p (deviation from the exa
tsolution) shown in (dB) for FDTD + CDuns(3,2) and present method (lower)


