ICSV13 - Vienna

The Thirteenth International Congress
on Sound and Vibration

Vienna, Austria, July 2-6, 2006
JAY-

Application of Optimized Compact Finite Difference
Schemes on Uneven Grid to the Computation of
Acoustic Wave Propagation

Reima Iwatsu*!, Hideo Tsuru?, and Kunikazu Hirosawa?
*1 Department of Mechanical Engineering, Tokyo Denki University
2-2 Kanda, Chiyoda-ku Tokyo 101-8457, Japan
2Nittobo Acoustic Engineering Corporation
1-21-10 Midori, Sumida-ku Tokyo 130-0021, Japan
iwatsu@cck.dendai.ac.jp (e-mail address of lead author)

Abstract

Compact schemes and linear multi-step methods are applied to the wave equation
with an intention to extend the applicability of the conventional FDTD method to
complex geometries. Fourth-order compact finite difference scheme on unevenly spaced
staggered mesh is utilized for the spatial discretization. System of equations is inte-
grated in time by using linear multi-step methods that use half-node arrangement in
time. The coeflicients of these time stepping methods are chosen to assure appropriate
accuracy for the amplification factor and phase error over the frequency of interest
while the whole time integration yields a stable solution. Proposed method is ap-
plied to several benchmark problems and the results show better resolution capability
compared to the conventional method.

INTRODUCTION

It appears that numerical simulation of sound wave propagation in rooms is now
realistic at least for low frequencies. Two methods are commonly used for the analyses
of room acoustics: boundary element method and finite difference method. The latter
method is easy to code, and straightforward to obtain pressure distribution as time
progresses. The cell centered finite difference scheme of second-order and the Leap-Frog
method are commonly used in the computation in time domain. Combination of these
amazingly simple schemes does produce stable and moderately accurate solutions often
sufficient for industrial use. This comfortable situation encounters difficulty however,
when we have to analyze rooms with non-parallel walls, desks and furniture, not to
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mention that reflective conditions on the material surface are not exactly known.
A remedy may be to use unevenly spaced grid points to model complex boundary
shapes and to employ finite difference schemes for uneven mesh. In the present report,
compact finite difference schemes [4] extended to uneven grid spacing are utilized and
linear multi-step methods are tested for time marching. The coeflicients of multi-step
methods are optimized so as to maximize the accuracy limit and stability limit of the
effective angular frequency of the schemes.

NUMERICAL METHOD

The problem to be solved is the initial-boundary value problem of linear wave equation
in three-dimensions. For the purpose of explanation, equations are written for scalar
variables, however extension to more than two-dimensions is straightforward.

Jo=H(ft), [flz,t=0)= fo, (1)

where f is either the velocity of the fluid or the pressure, H is the source term ¢ f,,
¢ is a constant sound velocity, fy is the initial value, and an appropriate boundary
conditions are imposed in addition. In the FDTD procedure, intermediate variable ¢
is introduced and the above equation is integrated in a form of two separate advection
equations.

ft:F(gvt)v gt:G(fvt)v (2)

where the couple f, g stands for the pressure and velocity or the velocity and pressure,
the source terms F = —cg,, and G = —cf,. In this form of equations, additional
initial and boundary values are required for the new variable g. Naturally when the
two equations are combined, the wave equation is retrieved since H = FG = GF.

Spatial Discretization

For the evaluation of first derivative, compact finite difference scheme for cell centered
uneven mesh is used for inner grid points. Let us refer this scheme as CDuns(3,2).

O‘fi/—l + fz’l + ﬁfz’l+1 = a(fﬂ_% - fi_ ) + ¢ (3)

1
2

For the boundary points (at ¢ = 4,,;,,), either of the following schemes, A (eq.4) or B
(eq.5) is used, depending on the location of half-nodes.

4B :a(fﬂ—% _fi—%)‘l'b(fﬂ—% _fi—%)—l_G (4)

fz’l‘|‘ﬁfz{+1 :@(fﬂ_%_fi+%)+6(fi+%_fi+%)+6 (5)
Coefficients of above schemes are numerically determined form given mesh intervals.
For sufficiently smooth meshes, schemes CDuns(3,2), and the boundary schemes A,

B are fourth-order and third-order respectively. When the grid spacing is uniform,
CDuns(3,2) retrieves the Pade scheme.
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Time Integration

For the time integration of advection equations, liner multi-step method of the follow-
ing form (M) is used.

s—1
P = ALY b 4 (6)

i=0

where € is the leading term of the error. When s = 3, by requiring second-order,
coeflicients are obtained as by = 2—2bg, b3 = bp—1 and the error ¢ = %—5(24b0—25)fm.

When s = 4, they are by = —3bg + 73/24, by = 3by — 37/12, by = 25/24 — by and
_ A
- 12

integration is reduced to the Leap-Frog method. The value of parameter by will be

(12bg — 13) fizze- It may be unnecessary to note that for s = 3 and by = 1, time

determined later.
After the first integration My, it is followed by the second integration M,

r—1
g =g ALY G 4 (7)
k=0

Equations (6) and (7) integrate the wave equation from time level n to n 4 1

q—1

fn-l-l — an _ fn—l + A2 Zlen—l +e. (8)
=0

where ¢ = s+ r — 1 and d; = Zé‘:o bi_;c;. If we refer the above method as qu, it
is obvious that M2, .| = M, - M,. Stability and accuracy of M is analyzed in the
following. Since analyses of ZWq2 involves too many free parameters, only the cases,
Z\432 = Ms - My, MZ = M, - M, and Z\452 = Ms - M3 are treated in the present study.

RESULTS

In the following, numerical error of CDuns(3,2) combined with boundary schemes A
and B are estimated first for a sine wave. Then angular frequency of the compact
schemes is analyzed for non-uniform mesh. Optimization of multi-step time integra-
tion is described next, and finally proposed method is applied to several benchmark
problems.

Estimation of spatial error

Sine wave f(z) = sin(az),a = 7 is chosen as a test function to estimate numerical
error of CDuns(3,2)+ boundary schemes A or B. By varying the number of mesh points
n, average error and the maximum error in the first derivative are plotted as functions
of n and z in Fig. 1 for a hyperbolic tangent mesh. The fourth-order accuracy is
actually realized and the maximum error always appears on the boundaries. Although
both boundary schemes A and B have same order of accuracy, maximum error of
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scheme A is smaller than B when n is large. Modest accuracy of 1072 in the first
derivative is achieved when n — 1 ~ 8 for both cases A and B, i.e. Az ~ 0.39. This
means that with this tolerance, approximately 8 points are necessary within a wave
length.

For uniform mesh, CDuns(3,2) has a real angular frequency. The angular fre-
quency of CDuns(3,2) is plotted in Fig. 2 for a power low grid a; = r* to show the
effect of non-uniform mesh. Plots in Fig. 2 indicate that the choice of » = 1.2 causes
a phase error of 2.5-1072 for aAz < 7. Analysis on the effect of ratio of grid spacing
r on the angular frequency provides a guideline on how to distribute grid points.

Optimization of Multi-Step Methods

Multi-step methods for advection equation: The angular frequency @ of multi-
step methods M, s = 3,4 (eq.6) is obtained as follows, by using the Laplace transform
and assuming that f =0 for ¢ <0.

2sin (51

s=1p ijwAt
E]‘:o bjet

According to [1], coefficients of the methods are optimized by requiring that deviation

WAL = (9)

in the angular frequency is minimized over frequencies of interest,

B = /77 (0Re(@AL — wAD? + (1 — o) Im(@AL — wAD?) d(wAl), Cﬁz—fol —0 (10)
-1

where 0 = 0.36 was used as in [1]. By assuming n = 0.5 for s = 3 and n = 7/2 for
s = 4, the following values are obtained: by = 1.03340232 for s = 3, by = 1.0843831
for s = 4. The Leap-Frog method M, is a special case where I'm(wAt) = 0. Optimized
version of M3 and My introduce a slight error in the imaginary part. In turn, they
attain more accurate real part over a wider range of angular frequency than M;. To
obtain a better understanding, Iy is plotted as a function of by in Fig. 3 for s = 3. As
shown in the figure, the optimal of by varies as 5 is varied. The value of 7 should be
chosen by considering the stability limit. In the present study, it was determined from
the accuracy and stability limit of the combined method, qu Combined multi-step
methods for wave equation are now described in the following.

Multi-step methods for wave equation: The stability of time integration methods
ZWq2 is analyzed by considering the amplification factor of the methods. Numerical
amplification factor of qu is compared with the exact amplification factor repaer =

—twAt
eTiwAL
q—1
U o twAL | pi2wAL (wAt)2 E dlel(l—l—l)WAt. (11)
Texact =0

In accordance to the notation of [2], above ratio is denoted as re~*, where r is the

ratio of amplification factors and & the phase error. The stability limit is defined as
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the maximum angular frequency wA¢(= w in Figs. 3 and 4) where |r| < 1 is satisfied
and denoted by a sign R in the figures. Accuracy limit for the amplification factor and
phase error are defined as the maximum angular frequencies where ||r] — 1| < 1073
and |§] <1072 holds. In Figs. 3 and 4, they are denoted as L. and I respectively. The
results are shown first in Fig. 3 (right) for Ms. In Fig. 4, accuracy and stability limit
for qu, g = 3,5 are shown as functions of dy. Recommended ranges for the value of
dp are 1.03 < dg < 1.083, wAt < 0.4 for M2, 1.04 < dy < 1.135, wAt < 0.4 for M}
and 1.28 < dp < 1.37, wAt < 0.45 for M2. In summary, it is confirmed that M, and
My - M, are stable with respect to the previously obtained optimal values of bg.

Benchmark Problems

One-dimensional wave propagation [3]: The solution at ¢ =400 of f; + f. =0

where f(0) = %exp (—in(?) (%)2) , =20 < 2z < 450, Az = 1.0 was computed by
using conventional method (= M;j - M; ) and optimized M5 - M3 (Fig. 5). To see
whether multi-step methods improve the accuracy of numerical solutions, deviation of
numerical solution from the exact solution devy = 3" | f, — feract|* versus by is plotted
in Fig. 6. It is readily seen that error of multi-step methods are two-order of magnitude

smaller than the conventional method.

Three-dimensional wave scattered by a sphere: Sound wave scattered by a
sphere is computed and calculated pressure is compared with the exact solution written
in a form of infinite series expansion. The radius of sphere is 0.2 (m) and the spherical
shape is expressed by masking the orthogonal mesh. Sound source is located at a
point 1 (m) apart from the center of the sphere. The average mesh spacing is 0.02
(m) in all directions and a total of 101° grid points are used. Solutions are obtained
on both uniform and non-uniform meshes. For the non-uniform mesh, the minimum
grid spacing is 0.0083 (m). Discrete time interval is fixed at At = 0.01 (msec). Sound
frequency is changed from 500 (Hz), 1000 (Hz) to 2000 (Hz). The computed pressure
in the frequency domain is shown in Fig. 7 (upper left) in the unit of (dB) for the
compact schemes combined with multi-step method (Ms - M3 with by = 1.04 for
both velocity and pressure integration). It was noted that the maximum error in the
numerical solution by FTDT is 5 (dB), while the maximum error is decreased to 3
(dB) when ED2 is replaced to CD4uns(3,2) (Fig. 7 upper right). Further replacement
of My - My to Ms- Ms decreases 0.3 (dB) (Fig.7 lower). Thus improvement is observed
for optimized version of the multi-step method.

SUMMARY

Compact finite difference schemes on cell centered uneven mesh and optimized multi-
step methods are applied to the computation of sound wave equation. Proposed meth-
ods produced numerical solution of good quality for benchmark problems. As to the
future plans, the following items will be treated.
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Figure 1: Error vs number of grid points n (left), error distribution for hyperbolic
mesh, C'Duns(3,2) + A,B

Application of compact scheme which uses four grid points on the right hand
side, i.e. CDuns(3,4) will be studied. By requiring fourth-order accuracy, one parame-
ter is undetermined in the coefficients and this parameter is used to optimize the wave
propagation property of the scheme for a given non-uniform mesh point distribution.

In the present study, optimized parameter is proposed for one-parameter family
of three and four step methods M, s = 3,4 for advection equation and three and five
step methods 1\4(]27 q = 3,5 for wave equation. It is now planned further to explore the
combination of M3 and M,. These methods result in ZWG2 = Ms-M, and Z\472 = My -M,.
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Figure 2: Effective frequency of CDuns(3,2) for non-uniform power-low mesh x; = r;

Left: real part, right: imaginary part

E/2

eta=pi

5 —eta=pi/2
---eta=1.0
- —eta=0.5

M3
—Left

-—-Right
—-- Phase

Figure 3: Deviation in the angular frequency Iy of multi-step method Ms as a function
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R (right) of Ms as a function of by
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Figure 5: Numerical solution at t = 400 obtained by FDTD (left) and Ms- Ms (right)

1000 i
—FoD |
100 — ~==-M3opt i
~ - Mdopt i
10
i
~ 14 4
H ;
0.1 .
001 ——-—- == T e
0.001o_____ T
0.0001 T T T T T
0.0 02 04 06 08 10

Courant number

Figure 6: Error devy vs Courant number for FDTD, Ms - Ms and My - My

Figure 7:  Sound pressure distribution in the frequency domain at 1000 (Hz) and

difference in p between FDTD and present (upper), Ap (deviation from the exact
solution) shown in (dB) for FDTD + CDuns(3,2) and present method (lower)




