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Abstract
In the vibration control of flexible structures, boundary feedback schemes are employed in
order to damp vibrations and achieve stabilization. A knowledge of the system’s vibration
spectrum is crucial to this process. We have developed a perturbation approach that, when
coupled with various asymptotic methods, yields highly accurate estimates for the vibration
spectra of Euler–Bernoulli beam and Kirchhoff thin plate problems. Here, that method is
extended to a stand-alone method, applicable to the Timoshenko beam equations. Of course,
many such problems are solvable using commercially available software packages these days.
The disadvantage here is that, as they generally employ FEM or similar numerical methods,
these packages do not offer any of the analytical or physicalinsights that are provided by
asymptotic methods. Thus, for example, our method allows usto see the similarities and dif-
ferences between the Euler–Bernoulli, Rayleigh and Timoshenko beams. However, by their
nature, asymptotic methods are least reliable at the low endof the spectrum where the most
“important” frequencies – i.e., those corresponding to thegreatest vibration energies – occur.
This is especially true of Timoshenko beam problems. Here, then, the perturbations allow us
vastly to improve these low-end estimates, to the point thatexcellent agreement with numeri-
cal results is obtained in every case we have tried.

INTRODUCTION

The Timoshenko beam equations constitute a model for athick beam, as they incorporate the
effects of rotary inertia and shear deformation. As such, the model is much more complicated
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than the Euler–Bernoulli beam, which leads to the subsequent difficulties in the analytic com-
putation of its vibration spectrum. We extend to this problem a perturbation method that has
been successful in the accurate computation of all ranges ofthe vibration spectrum of the
Euler–Bernoulli beam [1], the slewing beam [2] and certain Kirchhoff thin plate problem [3].
Here, it is seen to be a stand-alone method that includes, as its first approximation, the asymp-
totic estimation of the spectrum which results from the application of the Wave Propagation
Method of Keller and Rubinow ([4]) to the problem.

THE PROBLEM

We consider a Timoshenko beam of lengthL, with both ends strongly clamped. Letting
W (x, t) be the lateral displacement at pointx at time t, andΦ(x, t) the bending angle at
pointx at timet, the Timoshenko beam is described by the following equations ([4]):

ρWtt − KWxx + KΦx = 0, (1)

IρΦtt − EIΦxx + K[Φ − Wx] = 0, 0 < x < L. (2)

Here,EI is the constant flexural rigidity,ρ the constant mass density,K the constant shear
stiffness of a (uniform) cross section,Iρ the constant rotary inertia, andWx = ∂W

∂x
, etc. The

boundary conditions are

W (0, t) = Φ(0, t) = W (L, t) = Φ(L, t) = 0, t > 0. (3)

Now, we wish to find the eigenfrequenciesλ; thus, we let

W (x, t) = w(x)e−iλ2a2t, Φ(x, t) = φ(x)e−iλ2a2t,

wherea4 = EI
ρ

. Then, inserting (3) into (1) and (2) and eliminatingφ, we arrive at

w(4)(x) + 2r2λ4w′′(x) + (s4a4λ8 − λ4)w(x) = 0, 0 < x < L, (4)

wherer2 = 1
2(EI

K
+

Iρ

ρ
) ands4 =

Iρ

K
. Similarly, one may show, as in [4], that the separated

boundary conditions are

w(0) = w(L) = 0,

EI

K
w′′′(0) +

[

1 +
ρa4λ4EI

K2

]

w′(0) =
EI

K
w′′′(L) +

[

1 +
ρa4λ4EI

K2

]

w′(L) = 0.
(5)

APPLICATION OF THE PERTURBATION METHOD

Lettingw = eαx in (4), we find that

α = ±iλ2φ1, ±iλ2φ2,
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where

φ1 =

√

r2 −
√

r4 − s4a4 +
1

λ4
, φ2 =

√

r2 +

√

r4 − s4a4 +
1

λ4
.

Applying the boundary conditions (5) to the general solution

w = Aeiλ2φ1x + Beiλ2φ2x + Ce−iλ2φ1x + De−iλ2φ2x

leads to

A + B + C + D = 0,

f1A + f2B − f1C − f2D = 0,

Aeiλ2φ1L + Beiλ2φ2L + Ce−iλ2φ1L + De−iλ2φ2L = 0,

Af1e
iλ2φ1L + Bf2e

iλ2φ2L − Cf1e
−iλ2φ1L − Df2e

−iλ2φ2L = 0.

Here,

fi = −KEIφ3
i + ρa4EIφi +

K2

λ4
φi, i = 1, 2.

Our eigenfrequencies, then, are determined by the condition that

0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1

f1 f2 −f1 −f2

eiλ2φ1L eiλ2φ2L e−iλ2φ1L e−iλ2φ2L

f1e
iλ2φ1L f2e

iλ2φ2L −f1e
−iλ2φ1L −f2e

−iλ2φ2L

∣

∣

∣

∣

∣

∣

∣

∣

∣

= detM

= (f1 − f2)
2eiλ2L(φ1+φ2) − (f1 + f2)

2eiλ2L(φ1−φ2) − (f1 + f2)
2eiλ2L(φ2−φ1)

+ (f1 − f2)
2e−iλ2L(φ1+φ2) + 8f1f2. (6)

Now, at this point, standard asymptotic methods would neglect all terms ofO( 1
λ4 ), as

in [4]. Guided by our previous work ([1, 2, 3]), we, instead, replace 1
λ4 with ǫ, with the idea

of usingǫ = 1
λ4 in the implementation of our asymptotic method.

We have, then,

φ1(ǫ) =

√

r2 −
√

r4 − s4a4 + ǫ =

=

√

r2 −
√

r4 − s4a4 −
1

4
√

r2 −
√

r4 − s4a4
√

r4 − s4a4
ǫ + O(ǫ2)

φ2(ǫ) =

√

r2 +
√

r4 − s4a4 +
1

4
√

r2 −
√

r4 − s4a4
√

r4 − s4a4
ǫ + O(ǫ2)

which, upon simplification, become, forEI
K

>
Iρ

ρ
,

φ1(ǫ) = b +
1

2b(b2 − a2)
ǫ + O(ǫ2),

φ2(ǫ) = a +
1

2a(a2 − b2)
ǫ + O(ǫ2),
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wherea =
√

EI
K

andb =
√

Iρ

ρ
(and where we have abused notation, as thisa is not the same

as thea for whicha4 = EI
ρ

). Now, for Iρ

ρ
> EI

K
, we have

φ1(ǫ) = a +
1

2a(a2 − b2)
ǫ + O(ǫ2),

φ2(ǫ) = b +
1

2b(b2 − a2)
ǫ + O(ǫ2).

Thus, WLOG, we may assume thatEI
K

>
Iρ

ρ
. Then, after much simplification, we find that

f1(ǫ) = K2

[

a2b(a2 − b2) +
a4 − 5a2b2 + 2b4

2b(b2 − a2)
ǫ

]

+ O(ǫ2),

f2(ǫ) = K2 ab2

b2 − a2
ǫ + O(ǫ2).

Further, we expand the eigenvalues as

λ = λ0 + λ1ǫ + O(ǫ2)

and, we have

e±iλ2φ1L = e±iλ2

0
bL

{

1 ± ǫiL

[

2λ0λ1b +
λ2

0

2b(b2 − a2)

]}

+ O(ǫ2),

e±iλ2φ2L = e±iλ2

0
aL

{

1 ± ǫiL

[

2λ0λ1a +
λ2

0

2b(b2 − a2)

]}

+ O(ǫ2).

Thus, after much simplification, we may write the determinant equation (6) as

det M(ǫ) = C2
1 [eiλ2

0
L(a+b) − eiλ2

0
L(b−a) − eiλ2

0
L(a−b) + e−iλ2

0
L(a+b)]

+ ǫ
{[

2C1(C2 − C3) + iLC2
1 · 2λ0λ1(a + b) − iLC2

1

λ2
0

2ab(a + b)

]

eiλ2

0
L(a+b)

+
[

− 2C1(C2 + C3) − iLC2
1 · 2λ0λ1(b − a) − iLC2

1

λ2
0

2ab(b − a)

]

eiλ2

0
L(b−a)

+
[

− 2C1(C2 + C3) − iLC2
1 · 2λ0λ1(a − b) − iLC2

1

λ2
0

2ab(a − b)

]

eiλ2

0
L(a−b)

+
[

2C1(C2 − C3) − iLC2
12λ0λ1(a + b) + iLC2

1

λ2
0

2ab(a + b)

]

e−iλ2

0
L(a+b)

− 8a3b3
}

+ O(ǫ2) = 0. (7)

C1 = a2b(a2 − b2),

C2 =
a4 − 5a2b2 + 2b4

2b(b2 − a2)
,

C3 =
ab2

b2 − a2
.
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Now, the “first approximation”det M(0) = 0, which is the0th-order approximation re-
sulting from setting the coefficient ofǫ0 to zero, can be shown to be equivalent to the applica-
tion of the Wave Propagation Method to the problem. In order to improve our approximation,
we next set the coefficient ofǫ1 in (7) equal to zero, and solve forλ1 in terms ofλ0.

At this point, the question becomes what to use forǫ. We choose to callλ0 = λ(0) and
set

ǫ = ǫ0 =
1

(λ(0))4
,

from which we have our improved estimate

λ(1) = λ0 + ǫ0λ1.

The process may be continued recursively and indefinitely:

ǫi =
1

(λ(i))4
and λ(i+1) = λ0 + ǫiλ1.

RESULTS AND COMPARISONS

We present two examples. In each case, we have computed numerical results using the
Legendre-tau spectral method. For Example 1, we useρ = 1, Iρ = 2, I = 3, E = 2.5,
K = 1.5 andL = 0.1. The results can be seen in Table 1. The numerical results (LT) here
have converged to at least 8 decimal places. We have listed the first six frequencies, after
which the numerical results match the 0th-order approximations to 6 decimal places.

We have used for our Example 2 the built-in box beam found in [6]. Here, we have
ρ = .0038, Iρ = .00455, I = 2830, E = 10, 000, K = 940, 000 andL = 19. In this case,
the numerical results have converged to four decimal places. We have found that it is much
more difficult, here, to get agreement between the two methods. However, we see that the
perturbation results still approach the numerical results. We list the 25th frequency as, there,
we have exact agreement after four iterations, and we have found close agreement thereafter.

Table 1: Eigenfrequencies from Example 1.

1st 2nd 3rd 4th 5th 6th
LT 40.5121 64.2007 85.8129 123.051 129.223 161.084
λ(0) 40.5140 64.2088 85.8148 123.054 129.222 161.084
λ(1) 40.5115 64.1974 85.8123 123.051 129.223
λ(2) 40.5124 64.2027 85.8131
λ(3) 40.5122 64.1992 85.8129
λ(4) 40.5122 64.2011
λ(5) 64.2011
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Table 2: Eigenfrequencies from Example 2.

1st 2nd 3rd – 25th
LT 2331. 5002. 7770. 54160.
λ(0) 2815. 5456. 8099. 54050.
λ(1) 2082. 4822. 7665. 54220.
λ(2) 2472. 5119. 7852. 54140
λ(3) 2240. 4930. 7717. 54170.
λ(4) 2391. 5044. 7778. 54160.
λ(5) 2293. 5021. 7778.
λ(6) 2302. 5021.
λ(7) 2302.

IN CLOSING

The perturbation method exhibited here gives excellent agreement with numerical results in
many cases. In those cases where the agreement is not as good,greater accuracy may be
achieved by including terms corresponding to higher powersof ǫ in the expansion ofλ.
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