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Abstract

In the vibration control of flexible structures, boundargdback schemes are employed in
order to damp vibrations and achieve stabilization. A kralge of the system’s vibration
spectrum is crucial to this process. We have developed arpation approach that, when
coupled with various asymptotic methods, yields highlyusate estimates for the vibration
spectra of Euler-Bernoulli beam and Kirchhoff thin platelgems. Here, that method is
extended to a stand-alone method, applicable to the Tim&shgeam equations. Of course,
many such problems are solvable using commercially aveidftware packages these days.
The disadvantage here is that, as they generally employ REdlar numerical methods,
these packages do not offer any of the analytical or physisadihts that are provided by
asymptotic methods. Thus, for example, our method allowts gge the similarities and dif-
ferences between the Euler—Bernoulli, Rayleigh and Tirankb beams. However, by their
nature, asymptotic methods are least reliable at the lowoétite spectrum where the most
“important” frequencies —i.e., those corresponding togreatest vibration energies — occur.
This is especially true of Timoshenko beam problems. Hee),tthe perturbations allow us
vastly to improve these low-end estimates, to the pointakegllent agreement with numeri-
cal results is obtained in every case we have tried.

INTRODUCTION

The Timoshenko beam equations constitute a model foick beam, as they incorporate the
effects of rotary inertia and shear deformation. As sualntiodel is much more complicated
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than the Euler—Bernoulli beam, which leads to the subsddqiitficulties in the analytic com-
putation of its vibration spectrum. We extend to this prable perturbation method that has
been successful in the accurate computation of all rangéiseofibration spectrum of the
Euler—Bernoulli beani]1], the slewing beam [2] and certairckhoff thin plate problenm]3].
Here, itis seen to be a stand-alone method that includets, frsi approximation, the asymp-
totic estimation of the spectrum which results from the &pion of the Wave Propagation
Method of Keller and Rubinow/((]4]) to the problem.

THE PROBLEM

We consider a Timoshenko beam of length with both ends strongly clamped. Letting
W (z,t) be the lateral displacement at pointat time¢, and ®(z,¢) the bending angle at
point z at timet, the Timoshenko beam is described by the following equat{{#i):

Wy — KWyp + K&, =0, 1)
Here, ET is the constant flexural rigidity, the constant mass densitl, the constant shear

stiffness of a (uniform) cross sectiofy, the constant rotary inertia, aidl, = %—‘2’, etc. The
boundary conditions are

W (0,t) = ®(0,t) = W(L,t) = ®(L,t) =0,  ¢>0. 3)
Now, we wish to find the eigenfrequencigsthus, we let
Wz, t) = w(@)e ™M d(x,t) = p(x)e N,
wherea?* = %. Then, inserting[{3) intd{1) an@l(2) and eliminatingwe arrive at

w® () + 22040 () 4 (s*a*A® = Xw(z) = 0, 0<z<lL, 4)

wherer? = L(EL 4 I—;) ands* = . Similarly, one may show, as ifil[4], that the separated

boundary conditions are

w(0) =w(L) =0,
Bl
K

(5)

INET EI AINET
|/ (0) = S () + [+ E ) =0

w%®+b+

APPLICATION OF THE PERTURBATION METHOD
Lettingw = ¢** in @), we find that

a=+iN2¢1, +irepo,
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where

1 1
¢1:\/r2—\/r4—s4a4+ﬁ, ¢2=\/7“2+ r4—s4a4+ﬁ.

Applying the boundary conditionEl(5) to the general sohutio

w = Aei)\z(blar +Bei)\2¢2x+ce—i)\2¢1x+De—i)\2¢2x

leads to
A+B+C+ D=0,
J1A+ foB — [1C — faD =0,
Aez‘/\%lL + Bei)\2¢2L + Ce—i)\2¢1L + De—i)\qugL -0,
Aflez‘/\%lL + BfQGi)\2¢2L _ Cfle—i)\2¢1L - Df26—i)\2¢2L —0.
Here,

K2
fi = —KFEI$3 + pa*Elp; + T i=12

Our eigenfrequencies, then, are determined by the condhiat

1 1 1 1
bil f2 —f —f2
0= N1 L oiNgaL o—iNG1L o—iA202L =det M

FleNVPOL  f N0l _f NG _ g —iNeL
= (fy = fo) 2L L (f 4 126N L0=02) _ () 4 fy)2eN Liga=01)
+ (f1 — f2)2€_M2L(¢1+¢2) + 8f1f2. (6)

Now, at this point, standard asymptotic methods would reegltk terms ofO(A—{l), as
in [4]. Guided by our previous work[{[L] 2] 3]), we, insteadpiace% with ¢, with the idea
of usinge = % in the implementation of our asymptotic method.

We have, then,

o1(e) = \/7“2— Vrt—stgt 4 e =
ettt - e+ 0()

4\/7"2 — Vrt — stad/rd — s4ad
1
4\/7“2 —Vrd — stat/rt — s4gh

which, upon simplification, become, f(% > %’,

bo(e) = \/7”2—1— rd — stat + e+ O(e?)
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wherea = 4 /% andb = , /% (and where we have abused notation, asdhssnot the same

as thea for whicha® = £I). Now, for 2 > £Z, we have

1
(bl(ﬁ) =a+ mﬁ =+ 0(62)7

p2(e) =b+ e+ O(é%).

1
2b(b? — a?)
Thus, WLOG, we may assume th%{ > %’. Then, after much simplification, we find that

a* — 5a2b? + 2b*

fi(e) = K2 |a®b(a® — b?) + (07 — a7 e| +O0(e?),
2
fole) = K2 b2“_b e+ 0(c")

Further, we expand the eigenvalues as
A =X+ Ae+ O(e?)

and, we have

9
LiN2pi L HiAZBL , Ao 2
TN eIl _ FiAg {1:|:6’LL [2)\0)\1b+726(62_a2)}}+0(6 ),

2
+iX2¢poL _  +id2alL : Ao 2
e P2l _ oEiXg {1i62L |:2)\0)\1a+m:|}+0(6 )
Thus, after much simplification, we may write the determtrequation [[B) as

det M(e) = Clz[ez,\gL(aer) _ eiA(Q)L(bfa) _ eiA(Q)L(afb) + efi)\%L(aer)]

Y A2
_ . 2 o 2 0 i\ L(a+b)
n e{ [201(02 Cs) +iLCE - 2oi(a+b) — LG b)} N

r 2 .
+ | = 201(02 + Cg) — ZLCl2 . 2)\0)\1(b — a) — ZLC%%} eZA(Q)L(bfa)

r 2 .
+ | = 201(02 + Cg) — ZLCl2 . 2)\0)\1(@ — b) — ZLC%%} eZA(Q)L(aib)

[ by 4
+ [2C1(Cy — C3) — iLC?2XM A1 (a + b) + i LC%WOM)] o~ L(a+h)

— 8a3b3} +0(e?) =0. (7)

C1 = a®b(a® — b?),

a* — 5a°b? + 2v*
20(b2 —a?)
ab?

2 _ a2

Cy =

Cs =



ICSV13, July 2-6, 2006, Vienna, Austria

Now, the “first approximationdet M (0) = 0, which is thed™-order approximation re-
sulting from setting the coefficient ef to zero, can be shown to be equivalent to the applica-
tion of the Wave Propagation Method to the problem. In ordemiprove our approximation,
we next set the coefficient ef in (@) equal to zero, and solve fax in terms of).

At this point, the question becomes what to usecfdlVe choose to calky = A(*) and
set

€ =€) =

(A
from which we have our improved estimate

AL = \g + o).

The process may be continued recursively and indefinitely:

and )\(H_l) = Ao+ €A1.

RESULTS AND COMPARISONS

We present two examples. In each case, we have computed inam@sults using the
Legendre-tau spectral method. For Example 1, wemse 1, I, = 2,1 = 3, E = 2.5,
K = 1.5andL = 0.1. The results can be seen in Table 1. The numerical resulish&ie
have converged to at least 8 decimal places. We have listefirtt six frequencies, after
which the numerical results match the Oth-order approdonatto 6 decimal places.

We have used for our Example 2 the built-in box beam foundnH@&re, we have
p = .0038, I, = .00455, I = 2830, £ = 10,000, K = 940,000 andL = 19. In this case,
the numerical results have converged to four decimal plaseshave found that it is much
more difficult, here, to get agreement between the two methddwever, we see that the
perturbation results still approach the numerical resMits list the 25th frequency as, there,
we have exact agreement after four iterations, and we havelfolose agreement thereafter.

Table 1: Eigenfrequencies from Example 1.

1st 2nd 3rd 4th 5th 6th
LT 40.5121 64.2007 85.8129 123.051 129.223 161.084

A0 405140 64.2088 85.8148 123.054 129.222 161.084
A1 405115 64.1974 85.8123 123.051 129.223
) 40.5124 64.2027 85.8131

3) 40,5122 64.1992 85.8129
1) 40.5122 64.2011
) 64.2011
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Table 2: Eigenfrequencies from Example 2.

1st 2nd 3rd -  25th
LT 2331. 5002. 7770. 54160.
A0 2815, 5456. 8099. 54050.
AL 2082, 4822. 7665. 54220.
A2 2472, 5119. 7852. 5414(
AB3) 2240, 4930. 7717. 54170.
A4 2391, 5044. 7778. 54160.
A5 2293, 5021. 7778.
A6 2302, 5021.
A7 2302.

IN CLOSING

The perturbation method exhibited here gives excellergaexgent with numerical results in
many cases. In those cases where the agreement is not asggeatdr accuracy may be
achieved by including terms corresponding to higher powéesn the expansion of.
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