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Abstract
A mathematical formulation for linear plane-wave acoustic modelling of complex silencer sys-
tems containing multi-port elements has been developed. The prevalence of such multi-port
elements in automotive silencers — perforated pipe elements and crossovers being typical ex-
amples — dictates the need for a simulation tool that facilitates their integration into an acoustic
network comprising lumped and distributed elements.

A fundamental aspect of the presented approach evolves from the individual mathemat-
ical characterization of lumped and distributed elements: lumped elements are governed by
algebraic equations; distributed elements by differential equations. The resulting matrices thus
have distinctive forms: matrices similar to the so-called impedance form are used for lumped
elements; scattering-matrices for distributed elements. This distinction leads consequently to an
object-oriented software design with a set of classes reflecting the unique properties associated
with each of the acoustic element classifications.

A procedure for the automated assembly of the matrix system for the complete network
is introduced, in which the problem is intrinsically reduced to the smallest possible number of
unknowns. The solution delivers a vector of travelling pressure waves entering the distributed
elements at their connections. By calculating the pressure waves leaving the distributed ele-
ments via the scattering matrices, the sound field for the entire system can be easily obtained.
If one is only interested in the transmission behaviour of a complex system, the appropriate
scattering matrix can be obtained directly from matrix condensation by eliminating all inner
degrees of freedom. Since source terms can be added to both lumped and distributed elements,
active systems can also be modelled using the presented approach.

INTRODUCTION

Acoustic 2-port (4-pole) methods represent a well-established elementary technique for sim-
ulating wave propagation phenomena in automotive exhaust systems. Despite differences in
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the choice of state variables, a common aspect of the various formulations [1, 2] is the use of
closed-form, frequency-domain solutions of single acoustic transfer elements. These methods
lend themselves to systems with a single direction of sound power flux, such as cascaded el-
ements having side branches with closed ends. For systems with a multiple sound power flux
paths, such as commonly encountered in duct networks, alternative formulations have been in-
troduced [3, 4].

These formulations are restricted to 2-port wave guides, which constitutes a limitation
for automotive exhaust applications, as it precludes distributed models of perforated pipe ele-
ments. A “tri-flow” muffler, for example, comprises three perforated pipes within a casing and
requires an 8-port wave guide element for its plane wave acoustic description. For such ele-
ments, a discrete modelling approach provides a means to overcome this limitation [5]. In this
approach, the perforated pipes are represented as a network of 2-port elements that can be in-
tegrated into the formulation of Glav and Åbom [4]. For highly perforated pipes (e.g., liners of
absorption mufflers), numerical problems may however be associated with the fine discretiza-
tion. The novel modelling strategy presented here facilitates the direct integration of distributed
models of multi-port wave guides into a numerical model of a complex duct network.

MODELLING OF SINGLE ELEMENTS

Acoustic elements can be classified into distributed and lumped elements (see Fig. 1). Dis-
tributed elements are characterized by their length, which is significantly larger than their trans-
verse dimensions. At sufficiently low frequencies, the cross-sectional shape is irrelevant and the
wave propagation can be treated as one-dimensional along the length. Distributed elements are
also termed “wave guides” (notated by the index g) in the following.

In contrast, lumped elements have no particular wave propagation length, but act as con-
nectors to describe the transition of the sound power flux between wave guides. The lumped
elements are thus termed “nodal elements” (notated by the index n) in the following. The cross-
sectional area of lumped elements is of importance, especially when describing discontinuities
between the connected wave guides.

Distributed Elements — Wave Guides

The sound wave propagation within one-dimensional passive wave guides is described by a
set of homogenous partial differential equations derived from mass, momentum and energy
conservation (for example, see Munjal [1]). Dokumaci [6, 7] suggested that a state space form is
preferable to deriving a wave equation for the sound pressure. For the mathematical formulation,
an extended state vector

s(x, t) = {p1(x, t), ρ1(x, t), u1(x, t), . . . , pn(x, t), ρn(x, t), un(x, t)}> , (1)

can be used that comprises the quantities describing the oscillation state of the fluid – sound
pressure p , density fluctuation ρ and sound velocity u . The state vector is a function of the
element coordinate x and of time t . The number of geometric ports at each end of a wave
guide is denoted by the index n (i.e., a wave guide has a total of 2n geometric ports). The
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Figure 1: Examples of distributed and lumped multi-port elements. a) perforated 2-duct element; b) fork
element. Numbers in circles refer to the geometric ports.

linearized governing equations can be written in state space form as follows:

∂

∂x
s(x, t)−B1(x)

∂

∂t
s(x, t)−B2(x)s(x, t) = 0 . (2)

Using the harmonic transformation s(x, t) = s(x, ω) ejωt yields the governing equation for
complex-valued state vector

∂

∂x
s(x, ω) = B(x, ω)s(x, ω) (3)

with the complex-valued coefficient matrix B(x, ω) = [ jωB1(x) + B2(x) ] . For isentropic
wave propagation, the density fluctuations ρ are proportional to the sound pressures p . To
avoid degeneracy of the coefficient matrix B(x, ω) , the dependence of the complex-valued state
vector on density fluctuations is removed, but can be subsequently recovered via ρ = p/c2

0 .
From the acoustic state equation (3), the so-called matrizant approach [8] can be used to

derive the transfer matrix for a distributed element:

s(xm, ω) = [B(x, ω)]xm
x0

s(x0, ω) , (4)

in which [B(x, ω)]xm
x0

denotes the matrizant of the coefficient matrix B(x, ω) over the interval
(x0, xm) . For the numerical evaluation of the matrizant, the wave guide is divided into m equal
lengths ∆x = l/m (see Fig. 1). The complete matrizant is obtained by successive multiplica-
tion of the incremental matrizants [B(x, ω)]xi

xi−1
for i = 1 . . .m . For sufficiently small ∆x

increments, the x-dependant matrix coefficients can be replaced by their mid-point evaluations
at ξi = (xi−1 + xi)/2 .

[B(x, ω)]xm
x0

≈ [B(ξm, ω)]xm
xm−1

· · · [B(ξ2, ω)]x2
x1

[B(ξ1, ω)]x1
x0

(5)
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The matrizant evaluation thus reduces to a matrix product of exponential matrix functions. Intro-
ducing the naming convention Bi = B(ξi, ω) allows the incremental matrizant to be expressed
as follows:

[B(ξi, ω)]xi
xi−1

= eBi = Ψi(ω) diag
(
eβi(ω)∆x

)
Ψ−1

i (ω) , (6)

where Ψi(ω) denotes the matrix of left eigenvectors and βi(ω) the vector of eigenvalues of
the coefficient matrix Bi . The diag operator yields the diagonal matrix corresponding to its
vector argument. Substituting (6) into (5) leads to the expression

[B(x, ω)]xm
x0

≈
1∏

i=m

Ψi(ω) diag
(
eβi(ω)∆x

)
Ψ−1

i (ω)

≈ Ψm(ω) diag

(
e
∆x

mP
i=1

βi(ω)
)

Ψ−1
1 (ω) , (7)

since the matrix product of successive eigenvector matrices Ψ−1
i (ω)Ψi−1(ω) ≈ I holds for

small ∆x , provided that the eigenvalues and eigenvectors are ordered the same for all incre-
mental matrizants. From the transfer matrix (7), it can be seen that a new complex-valued state
vector s±(ω) can be introduced. Substituting (7) into (4), and multiplying by the inverse of the
eigenvector matrix Ψ−1

m (ω) from the left side, results in the transformation between the state
vectors:

s±(x0, ω) = Ψ−1
1 (ω)s(x0, ω) and s±(xm, ω) = Ψ−1

m (ω)s(xm, ω) . (8)

Setting the first component of each eigenvector ψj(ω) to unity allows the components of the
state vector s±(x, ω) = {p+(x, ω),p−(x, ω)}> to be interpreted as the progressive p+

j (x, ω)
and reflected p−j (x, ω) pressure waves. Since the wave propagation constants are governed by
the eigenvalues, the distinction between progressive and reflected waves arises from the sign
of the imaginary components Im(βj) . By partitioning the set of eigenvalues into {β+

j (ω)}
and {β−j (ω)} , which correspond to {βj(ω)|Im(βj(ω)) < 0} and {βj(ω)|Im(βj(ω)) > 0} ,
respectively, one obtains the sets of eigenvectors {ψ+

j (ω)} and {ψ−j (ω)} .
Using the following notation for the exponential matrices of the sets of eigenvalues,

G+(ω) = diag

(
e
∆x

mP
i=1
{β+

j (ω)}>
i

)
and G−(ω) = diag

(
e
∆x

mP
i=1
{β−j (ω)}>

i

)
, (9)

results in the scattering matrix of a wave guide between points 0 and m :{
p+(xm, ω)
p−(xm, ω)

}
=
[
G+(ω) 0

0 G−(ω)

]{
p+(x0, ω)
p−(x0, ω)

}
. (10)

This “classical” definition of the scattering matrix is, however, inappropriate for mod-
elling a duct network, since it constitutes a preferential bias for ports at point 0 versus
ports at point m of a wave guide. Instead, a modified sign convention is introduced to
distinguish between pressure waves entering and leaving the wave guide: incoming pres-
sure waves p⊕g (ω) = {p+(x0, ω),p−(xm, ω)}> and outgoing pressure waves p	g (ω) =
{p−(x0, ω),p+(xm, ω)}> .
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When active wave guides are considered, the source terms that should appear in the gov-
erning equations can be included using a simplified approach. Based on the independence
of passive and active components, the source vector q	g (ω) = {q	(x0, ω),q	(xm, ω)}> is
added to the vector of outgoing pressure waves p	g (ω) . Using the above definitions of the state
vectors p⊕g (ω) and p	g (ω) , a scattering matrix for wave guides

G(ω) =

[
0 (G−(ω))−1

G+(ω) 0

]
(11)

can be derived from (10) that yields the following relationship between the state vectors and the
source vector:

p	g (ω) = G(ω)p⊕g (ω) + q	g (ω) . (12)

The relationship between the state vector sg(ω) = {s(x0, ω), s(xm, ω)}> and the in-
coming p⊕g (ω) and outgoing p	g (ω) pressure waves is defined by the transformation matrices

T⊕(ω) =
[
Ψ+

1 (ω) 0
0 Ψ−

m(ω)

]
and T	(ω) =

[
Ψ−

1 (ω) 0
0 Ψ+

m(ω)

]
, (13)

which gives the relationship

sg(ω) = T⊕(ω)p⊕g (ω) + T	(ω)p	g (ω) . (14)

For isentropic wave propagation, the aforementioned density fluctuation and sound pressure
relationship can be reintroduced into the eigenvector matrices Ψ+

1 (ω) , Ψ−
1 (ω) , Ψ+

m(ω) and
Ψ−

m(ω) .
Substituting (12) into (14) leads to a final relationship between the state vector, the in-

coming pressure waves and the source vector:

sg(ω) = T(ω)p⊕g (ω) + qg(ω) , (15)

in which a transformation matrix

T(ω) = T⊕(ω) + T	(ω)G(ω) (16)

and a transformed source vector

qg(ω) = T	(ω)q	g (ω) (17)

have been defined. The equations (12) and (15) constitute the basis for the class interface for
distributed elements. The class interface delivers the scattering matrix G(ω) , the source vector
q	g (ω) , the transformation matrix T(ω) and the transformed source vector qg(ω) .

Lumped Elements — Nodal Elements

In contrast to distributed elements, lumped elements lack a spatial component. As a result of
which, the governing equations are much simpler. In many cases, the control volume for the con-
servation equations may even degrade to a control area and the governing equations to a quasi-
steady form. Lumped inertance and lumped compliance elements cannot however be treated
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as quasi-steady. Using a state vector sn(t) = {p(t), ρ(t), u(t), . . . , pn(t), ρn(t), un(t)}> that
includes the acoustic state variables of all n geometric ports of a lumped element, and consid-
ering inertia terms, the linearized governing equations can be written in the form

N1
∂

∂t
sn(t) + N2sn(t) = qn(t) , (18)

in which qn(t) is the source vector.
Using the frequency transformations sn(t) = sn(ω) ejωt and qn(t) = qn(ω) ejωt , al-

lows a complex-valued coefficient matrix N(ω) = [jωN1 + N2] to be introduced that leads to
the final form for nodal elements:

N(ω)sn(ω) = qn(ω) (19)

The class interface for nodal elements delivers the nodal matrix N(ω) and the source
vector qn(ω) accordingly.

MODELLING THE COMPLETE NETWORK

Modelling the network implies assembling the matrix equations of all wave guides and
nodal elements. A new state vector for the complete network is introduced s(ω) =
{sg,1(ω), . . . , sg,n(ω)}> that is simply a column vector containing the state vectors sg,i(ω)
of all i = 1 . . . n wave guides. The vectors of incoming p⊕(ω) and outgoing p	(ω) pressure
waves, and the wave guide source vector q	(ω) are defined similarly. After combining the
scattering matrices into a single block diagonal matrix Gs(ω) = diag (G1(ω), . . . ,Gn(ω)) ,
the relationship between incoming and outgoing pressure waves can be determined for the com-
plete network system (notated by the index s):

p	(ω) = Gs(ω)p⊕(ω) + q	(ω) . (20)

Establishing a network transformation matrix Ts(ω) = diag (T1(ω), . . . ,Tn(ω)) and a trans-
formed source vector qg(ω) = {qg,1(ω), . . . ,qg,n(ω)}> allows the network state vector s(ω)
to be expressed as a function of the vector of the incoming pressure waves:

s(ω) = Ts(ω)p⊕(ω) + qg(ω) . (21)

To match the sort sequence of the state vectors for the wave guides sg,i(ω) with that of
the nodal elements sn,j(ω) , a projection or permutation matrix Π is introduced that reorders
the vector components:

{sn,1(ω), . . . , sn,m(ω)}> = Π {sg,1(ω), . . . , sg,n(ω)}> . (22)

The projection matrix consists of 3 × 3 unity matrices I3 , since the dynamic state at each
port is described by the three quantities p, ρ and u . After introducing a block diagonal ma-
trix Ns(ω) = diag (N1(ω), . . . ,Nm(ω)) for a network of j = 1 . . .m nodal elements and
the corresponding source vector qn(ω) = {qn,1(ω), . . . ,qn,m(ω)}> , one can write a nodal
equation for the complete network:

Ns(ω)Πs(ω) = qn(ω) . (23)
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Setup of the Network Equation

Substituting (21) into (23) defines the system matrix

S(ω) = Ns(ω)ΠTs(ω) (24)

and the source vector of the duct network

q(ω) = qn(ω)−Ns(ω)Πqg(ω) . (25)

With these definitions, the matrix equation of the complete duct network that allows the deter-
mination of the vector of the incoming pressure waves for all wave guides can be written as
follows

S(ω)p⊕(ω) = q(ω) . (26)

It is important to observe that the total number of unknowns of a network system is determined
solely by the wave guides.

Scattering and Transformation Matrices of a Complex Multi-Port Element

To obtain the scattering matrix G(ω) of a complex element comprising several wave guides
and nodal elements, virtual one-port nodes are attached to the ports corresponding to the n

geometrical ports of the complex element. These ports are termed “boundary ports” (index b). In
contrast, the “inner ports” (index i) are ports at which the wave guides of the complex element
connect to each other. The network equation (26) can thus be partitioned into the following
matrix equation [

Sbb(ω) Sbi(ω)
Sib(ω) Sii(ω)

]{
p⊕b (ω)
p⊕i (ω)

}
=
{
qb(ω)
qi(ω)

}
, (27)

where the dimension of the vector of incoming pressure waves at the boundary matches the di-
mension of the vector of the virtual sources dim(p⊕b (ω)) = dim(qb(ω)) = n . Rearrangement
of the solution vector, and solving of the resulting equation system, leads to the matrix equation{

qb(ω)
p⊕i (ω)

}
=
[
Sbb(ω)− Sbi(ω)S−1

ii (ω)Sib(ω) Sbi(ω)S−1
ii (ω)

−S−1
ii (ω)Sib(ω) S−1

ii (ω)

]{
p⊕b (ω)
qi(ω)

}
. (28)

The solution of the incoming pressure waves at the inner nodes p⊕i (ω) , as a function of the
pressure waves incoming at the boundary nodes p⊕b (ω) and of the inner sources qi(ω) , can be
substituted in the partitioned scattering matrix of the network (20){

p	b (ω)
p	i (ω)

}
=
[
Gbb(ω) Gbi(ω)
Gib(ω) Gii(ω)

]{
p⊕b (ω)
p⊕i (ω)

}
+
{
q	b (ω)
q	i (ω)

}
, (29)

to obtain the scattering matrix of a complex element

G(ω) = Gbb(ω)−Gbi(ω)S−1
ii (ω)Sib(ω) (30)

with the source vector

q	(ω) = Gbi(ω)S−1
ii (ω)qi(ω) + q	b (ω) . (31)
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The derivation of the transformation matrix T(ω) and the transformed source vector
q(ω) completes the class interface for a complex element. Partitioning the transformation ma-
trix of the complete network (21) leads to{

sb(ω)
si(ω)

}
=
[
Tbb(ω) Tbi(ω)
Tib(ω) Tii(ω)

]{
p⊕b (ω)
p⊕i (ω)

}
+
{
qg,b(ω)
qg,i(ω)

}
. (32)

Substituting the incoming pressure waves at the inner nodes p⊕i (ω) yields the transformation
matrix of a complex element

T(ω) = Tbb(ω)−Tbi(ω)S−1
ii (ω)Sib(ω) (33)

with the associated source vector

q(ω) = Tbi(ω)S−1
ii (ω)qi(ω) + qg,b(ω) . (34)

CLOSURE

The methodology presented extends the Glav and Åbom [4] formulation to include distributed
and lumped multi-port elements. A consistent method has been presented for integrating lumped
2-port elements (such as area discontinuities) and lumped multi-port elements (such as branch-
ing) as nodes of the acoustic network; a treatment that minimizes the total number of system
unknowns. For cascades of 2-port elements, it is anticipated that the projection matrix Π and
the system matrix S can be adjusted for improved performance. Alternatively, the inversion of
the submatrix Sii could be accelerated.
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