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Abstract
Near-field acoustical holography (NAH) requires the measurement of the near-field pressure
field over a conformal and closed surface in order to recover the acoustic field on a nearby
surface. Very often we encounter applications where pressure measurements are available
only over a small open surface. In these cases the strict NAH theory does not hold, but still
there are techniques used to overcome this difficulty. The best known is patch NAH, which
has been used for planar surfaces. In this work we will discuss two techniques used for general
surfaces: patch inverse boundary element methods (IBEM) and patch NAH using equivalent
sources. We will compare the error of the normal velocity reconstruction in both methods and
recommend possible improvements. We use a cylindrical surface excited by a point force as
an example to validate our results.

INTRODUCTION

Denote asΓ the surface of cylinder as shown in figure1. For a time-harmonic (e−iωt) dis-
turbance of frequencyω the sound pressurep satisfies the homogeneous Helmholtz equation
inside the fuselage

∆p + k2p = 0, (1)

wherek = ω/c is the wave number andc the constant for the speed of sound.

The conventional solution of interior NAH will require that the pressure should be mea-
sured on a closed surface interior toΓ. Ideally this measurement surface will be very close
to Γ in order to obtain a high-resolution reconstruction. However, practical implementations
does not allow a closed and all encompassing measurement surface. Thus a smaller measure-
ment surface, or “patch” surface, is used instead. In this work we will consider the case when
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Figure 1:Cylindrical surfaceΓ and the patch surfaceΓp.

measurements are taken over a patchΓ0, where this patch is conformal the surfaceΓp (see
figure1).

We use the integral representation[1, 2, 3] for a pointx = (x1, x2, x3) ∈ Γ0

p(x) =
∫

Γp

Φ(x,y)ϕ(y)dS(y), (2)

where

Φ(x,y) =
exp(ik |x− y|)

4π |x− y| .

Similarly the normal velocity is given by

iρωv(x) =
∫

Γp

∂Φ(x,y)
∂n(x)

ϕ(y)dS(y) +
1
2
ϕ(x), x ∈ Γp, (3)

wheren is the outward unit normal andρ the constant of the medium density.

A solutionp of (1) can be represented by the method of equivalent sources[4, 5]. In this
method we are required to define a source surfaceΓs lies at a constant distanceδ from Γp as
shown in figure2. This method uses the representation

p(x) =
Ns∑

j=1

qjΦ(x, zj), zj ∈ Γs, (4)

whereNs > 0 is the number of sources andqj , j = 1, ..., Ns the source coefficients. The
normal derivative is calculated using

iρωv(y) =
Ns∑

j=1

qj
∂Φ(y, zj)

∂n(y)
, y ∈ Γ. (5)
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Figure 2:SurfacesΓp, Γs andΓ0.

NUMERICAL DISCRETIZATION

The boundary surfaceΓp is decomposed into quadrilateral elements with four nodes. The
boundary element method with iso-parametric linear functions[3] is selected for interpolating
the geometric and acoustical quantities. GivenM pressure measurements onΓ0, represented
asp, recoverN pressure and normal velocity points onΓp, represented asps andvs respec-
tively. Whenx ∈ Γp

0, (2) gives the matrix equation

[S] ϕ = p (6)

where[S] is aM ×N complex matrix andϕ is the column vector ofN entries that represent
values of the densityϕ onΓ. Similarly, whenx ∈ Γ, (3) produce the matrix equation

vs = [K] ϕ, (7)

where[K] is anN ×N complex matrix.
The source surfaceΓs does not need to be decomposed into surface elements, instead

we just need to create a grid withNs points distributed overΓs. Then is simple to obtain the
following matrix system

[G]q = p, (8)

where the coefficients of theM ×Ns complex matrix[G] are given by

Gij = Φ(xi, zi).

Herexi are the points inΓ0 andzj are the points inΓs. Similarly we obtain the relationship

vs =
1

iρω
[Gsv]q (9)
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where the coefficients of theN ×Ns complex matrix[Gsv] are given by

Gsv
ij =

∂Φ(yi, zi)
∂n(yi)

,

andyi are the points inΓ

NUMERICAL REGULARIZATION

For the experimental problem, the exact pressurep is perturbed by measurement errors. We
denote the measured pressure aspm. If the elements of the perturbatione = pm − p are
Gaussian (unbiased and uncorrelated) with covariance matrixσ2

0 [I], thenE
(‖e‖2

2

)
= Mσ2

0

(here‖.‖2 is the2-norm). It is well known that the linear systems on (6) and (8) are ill-posed,
i.e., the errors inpm will be amplified in the solutionϕ or q, and in most of the cases the
recovery will be useless.

To avoid the amplification of the measurement errors, specialregularization methods
are used to find the solution of these linear systems. The best known implementation of these
methods requires the use of the singular value decomposition (SVD)

[S] =
[
U1

] [
Σ1

] [
V1

]H
, [G] =

[
U2

] [
Σ2

] [
V2

]H

where
[
U1,2

]
,
[
V1,2

]
are unitary matrices and

[
Σ1,2

]
is a diagonal matrix containing the

singular valuesσi in order of non-decresing magnitude. Regularization methods are imple-
mented using the explicit formula

ϕα =
[
V1

] [
F1,α

] [
Σ1

] [
U1

]H
, qα =

[
V2

] [
F2,α

] [
Σ2

] [
U2

]H
, (10)

Here the diagonal matrices
[
F1,α

]
,
[
F2,α

]
contain the filter factors[6] which are used to reduce

the effect of the measurement errors in the reconstruction. The parameterα ≥ 0 is called the
regularization parameter, and should be chosen correctly. There are several types of filter
factors used for different ill-posed problems, but in this work we will use the filter factors of
Tikhonov with a high-pass filter[7].

PHYSICAL EXPERIMENTS

The experimental configuration for the holographic measurement is similar to the previous
work of Herdic[8]. The surfaceΓ is an aluminium stiffened cylindrical shell (0.81m radius,
2.55m length and the shell thickness varies between0.8 and1.2mm) excited by a point force
applied to a rib/stringer intersection at one end of the cylinder. The measurements were con-
ducted using a chirp waveform over a band from10 to 1000Hz with 0.61Hz resolution. For
this interior NAH problem, the measurement surfaceΓ0 is a cylindrical array of0.7045m ra-
dius,123.75 degrees angle and0.74m length as shown in figure2. The pressure measurements
onΓ0 are a grid of12 points over the radius and10 points over the length.



ICSV13, July 2-6, 2006, Vienna, Austria

Γp is a patch of the surfaceΓ that is directly in front ofΓ0. Γp is a cylindrical surface of
0.81m radius, with the same angle and length thanΓ0. The normal velocity is measured over
120 points inΓp distributed as inΓ0. We will consider the use of extension pointsNx in Γp

(andΓs for ESM), which will make the cylindrical surface angle146.25, 168.75 degrees and
respectively the length0.91, 1.08m for Nx = 1, 2 (see figure2).

The vectorvs contain the measured normal velocity onΓp with Nx = 0. Notice that
the previous methods will provide the reconstructed normal velocityvs

r for Γp (even over
extended pointsNx > 0), but the relative error‖vs − vs

r‖2/‖vs‖2 × 100 will be considered
over the part ofΓp that was not extended (Nx = 0). Since we know the exactvs, we choose in
all our reconstructions the optimal regularization parameterα for the Tikhonov regularization
with a high-pass filter in (10).

60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

100

frequency (Hz)

R
el

at
iv

e 
E

rr
or

 %

N
x
=0

N
x
=1

N
x
=2

Figure 3:Patch IBEM reconstruction for different frequencies using extension pointsNx.

In figure 3 we show the relative error of reconstructed normal velocity using patch
IBEM for 44 frequencies equally spaced from88.5Hz to180Hz. This figure clearly shows the
importance of the extension points. WhenNx = 0 the errors are bigger for all frequencies.
Nx = 1, 2 have similar errors, butNx = 2 does slightly better. If we utilize more extension
points we will observe that the errors will not decrease, but instead the columns of the matrix
system in (7) will increase. The increase in the columns of the matrix[S] in (7) will increase
considerably the memory requirements of patch IBEM. For that reason is just necessary to
useNx = 2 with patch IBEM.

In figure4 we show the relative error of the reconstructed normal velocity using ESM
with δ = 0.08m for 44 frequencies equally spaced from88.5Hz to180Hz. This figure shows
that the reconstruction errors are similar to the reconstruction errors of patch IBEM for differ-
ent extension points. WhenNx = 0 the errors are higher for all frequencies, and forNx > 0
the errors reduce. Again as for the patch IBEM method, there will not be a considerable de-
crease in the reconstruction point forNx greater than2.
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Figure 4:ESM withδ = 0.08m reconstruction for different frequencies using extension points
Nx.
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Figure 5:patch IBEM and ESM reconstruction for different frequencies using extension point
Nx = 2.

In figure5 we show the comparison between the errors of patch IBEM and ESM with
δ = 0.08m. In both methods we useNx = 2 and we found that they produce similar errors for
all frequencies. Finally in figure6 we show the normal velocity measurementsvs in Γp and
in figure7 we show the reconstructed normal velocityvs

r using patch IBEM with extension
pointsNx = 2.
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85.5 Hz, −59.99 dB 88.5 Hz, −65.32 dB 91.6 Hz, −58.85 dB 94.6 Hz, −66.87 dB 97.7 Hz, −70.50 dB 100.7 Hz, −72.84 dB

103.8 Hz, −74.81 dB 106.8 Hz, −75.97 dB 109.9 Hz, −76.05 dB 112.9 Hz, −73.89 dB 116.0 Hz, −71.92 dB 119.0 Hz, −70.12 dB

122.1 Hz, −69.13 dB 161.8 Hz, −62.89 dB 164.8 Hz, −61.07 dB 167.9 Hz, −57.58 dB 170.9 Hz, −50.33 dB 174.0 Hz, −50.59 dB

Figure 6:Normal Velocity measurements for some selected frequencies.

85.5 Hz, −60.34 dB 88.5 Hz, −66.28 dB 91.6 Hz, −59.66 dB 94.6 Hz, −67.49 dB 97.7 Hz, −70.33 dB 100.7 Hz, −72.42 dB

103.8 Hz, −74.02 dB 106.8 Hz, −75.79 dB 109.9 Hz, −76.99 dB 112.9 Hz, −78.04 dB 116.0 Hz, −75.73 dB 119.0 Hz, −69.72 dB

122.1 Hz, −70.77 dB 161.8 Hz, −61.49 dB 164.8 Hz, −62.05 dB 167.9 Hz, −59.11 dB 170.9 Hz, −49.54 dB 174.0 Hz, −50.65 dB

Figure 7:Normal Velocity reconstruction using patch IBEM with extension pointsNx = 2 for
some selected frequencies.

CONCLUSION

In this work we have shown two methods that are used for the reconstruction of the normal
velocity when measurements are available over a patch: patch IBEM and ESM. It was found
that both methods produce similar reconstruction errors, and also in both methods these errors
can be reduced by the use of extension points in the reconstruction surfaceΓp (and source
surfaceΓs for ESM).
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ESM does not require the time-expensive calculations of the integral as in IBEM. For
that reason we have shown that ESM can be numerically more attractive than patch IBEM,
when patch measurements are available.

ACKNOWLEDGEMENTS

This work was supported by the Office of Naval Research.

REFERENCES

References

[1] D. Colton, R. Kress,Integral Equation Methods in Scattering Theory, Wiley-Interscience
Publication, New York, NY (1983).

[2] T. K. DeLillo, V. Isakov, N. Valdivia, L. Wang,The detection of surface vibrations from
interior acoustical pressure, Inverse Problems., 19(3), (2003), 507–524.

[3] N. Valdivia, E. G. Williams,Implicit methods of solution to integral formulations in
boundary element methods based near-field acoustic holography, J. Acoust. Soc. Am.,
116(3), (2004), 1559–1572.

[4] A. Sarkissian,Extension of measurement surface in near-field acoustic holography, J.
Acoust. Soc. Am., 115, (2004), 1593–1596.

[5] A. Sarkissian,Method of superposition applied to patch near-field acoustic holography,
J. Acoust. Soc. Am., 118, (2005), 671–678.

[6] P. C. Hansen,Rank-Deficient and Discrete Ill-Posed Problems, Siam, Philadelphia, PA
(1998).

[7] E. G. Williams,Regularization methods for near-field acoustical holography, J. Acoust.
Soc. Am., 110, (2001), 1976–1988.

[8] P. Herdic, B. Houston, M. Marcus, E. Williams, A. Baz,The vibro-acoustic response and
analysis of a full-scale aircarft fuselage section for interior noise reduction, J. Acoust.
Soc. Am., 117, (2005), 3667–3678.


