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Abstract

In this paper, a genera analysis method is developed for the free vibrations of cylindrical
shells with general elastic supports. It is shown that the classical ssmple boundary conditions
can be simply treated as the special cases when the stiffness constants for the restraining
springs become either zero or infinity. The shell displacements are expanded as an improved
Fourier series, which ensures the excellent accuracy and numerical stability of the solutions.
This method is potentially advantageous for the mid-frequency vibration analysis because of
its analytical forms of the solutions and involvement of much fewer degrees of freedom in
comparison with the traditional grid-based methods.

INTRODUCTION

Shells together with beams and plates are the structural elements most commonly
used in industrial applications. Vibrations of shells have been an active research
subject in structural dynamics for many years, resulting in a large number of
publications. For instance, there are approximately 1000 research publications that
have been referred in Leissa’s book [1]. In comparison with beams and plates, the
shell problems are far more complicated. Many shell theories have been used to
include the various effects associated with shell deformations or stress components.
Unlike beams and plates, the coupling between different displacement components is
usualy important due to the curvatures of the shells. Accordingly, the dynamic
characteristic of a shell tends to become more sensitive to the boundary conditions.

In the literature, there are many investigations about the free vibrations of shells
under various boundary conditions. Each kind of boundary conditions will typically
require a specific analysis method or solution procedure. Unfortunately, even
consider the so-called simple boundary conditions at each end, they constitute to 136
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different combinations for a shell. This difficulty will become much more
remarkable if a shell is elasticaly restrained at ends. To avoid unnecessary
complications, the simply supported boundary condition is often considered as default
in many applications such as sound radiation from shells. However, the boundary
conditions encountered in real world can be significantly different from the simply-
supported.

In this paper, a genera method is presented for the vibration analysis of shell
with elastic boundary supports. More importantly, this method can be universally
applied to shells with various boundary conditions. Varying the boundary condition
will simply require a change of the stiffness constants for the restraining springs just
like modifying other geometrical or material parameters such as shell thickness or
mass density. The excellent accuracy and convergence of the solution are
demonstrated through numerical examples.

FORMULATIONS

Consider an elastically restrained circular cylindrical shell of radius R, thickness h
and length L. Let u, v, and w denote the displacements in the axial x, circumferential
¢ and radial r directions, respectively. The equations of the motions of the shell can
then be written as

ON, oON,, o%u
X 4 X0 — 5Hh 1
OX ROO p ot? @)
N, oON, o%v
X+ = ph 2
ox  RrRoo Pz @
oQ, 8Q, N, o%w
~+ - = ph 3
ox " Roo R Pz @

where Ny, Nyg, Ng, Qx and Qg represent the resultant forces acting on the mid-surface.
The boundary conditions can be accordingly expressed as.

at x=0,
N, —ku=0 , N,,—k,v=0 (4,5)
M,, ow
+—2_kw=0, M, +k,—=0; 6,7
Qx R@H 3 X 48)( ( )
at x=L,
N, +ku=0 , N,,+kv=0 (8,9)
oM., ow
Qx R@H 7 X 88)( ( )

where ki, ka,.., kg are the stiffness constants for the restraining springs.

The resultant forces and moments in the above equations are the functions of
the displacement components, and the expressions are readily found in any book
about shells. It should be note that the elastic supports at ends represent a set of
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general boundary conditions; all the simple boundary conditions can be considered as
its special case when the spring constants take some extreme values such as zero or
infinity.

In this study, the displacements will be sought in the following forms

u(x,0) = [i a,, CoSA X+ p, (x)j cosnd, 4, = m—Lﬁ) (12
v(X,6) :(ibm COSA, X + pv(x))sinne, (13)
w(x,8) = ( icm COSA, X + pW(x)) cosnéd (14

In Egs. (12-14), pu(X), pu(X) and pw(x) represent a set of closed form functions,
satisfying:

6p5—>EX)X=O - %Xo =5, apgix)Isz = aufa);’O)IxL - B, (15 16)

apéiX)L _ 8\/(Xé)7(z/ Z)L) 5 ﬁloé)((X)IX_L _ &/(X;ZIZ)IXL 5 (17.18)

R R T S I I
a?’g)v(vg(x)lw _ a3vavx(>;,o)|m 5 agg;‘*()()'“ _ 63\?I(ax§’0)L .

It is easy to verify that the above conditions are readily ensured by choosing
P, (X) = &1(X) B, + 55 (X) B, P, (X) =& (X) B+ &L (X) B, and (23, 24)

P (X) = &1(X) Bs + & (X) Bs + C5(X) By + £, (X) B - (25)
where
¢1(x) (6Lx — 212 —3x?) /6L
&,(X) _ (3x* - L?)/6L (26)
&%) — (15x* — 60Lx> + 60L°x> —8L*)/ 360L
£,(X) (15x* —30L°x* + 7L*) / 360L

Although the auxiliary functions are here chosen as polynomials, they can be actually
defined as any closed form functions which are sufficiently smooth over [0, L]. The
reason for including these auxiliary functions in the displacement expansions is
simply to remove all the possible discontinuities with the displacements and their
derivatives at the end points for any given boundary condition. The benefits for
doing this have been discussed for the beam and plate problems[2, 3].

By substituting Egs. (12-25) into the boundary conditions, Egs. (4-11), the
unknown coefficients in the polynomials can be found in terms of Fourier coefficients
as
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{A}ziHTth, {&}ZiHTQ%m : (27, 28)
ﬂz m=0 134 m=0
{6 B B BT =ZHIQIC,. (29)
where
LL_,_]_ kL 2_L+1_ﬂ kL
H =| 3 .6 H,=| 3. 2 _ 6 , (30,31)
kel kb 4 kL kel , 1-u
6 3 6 3 2
kb kb kLKL
3 6 45 360
KL kL L KL
H, = 6 3 360 45 , (32)
~ K K KL KL
K,+— —= = =
L 3 6
K -~ K KL KL
_ k8+_ — f—
L L L 6 3
~ ~ Y ~ ~ T
Qr={k D™, Qr={k, D%, (33,34)
and
Q=K (D" -x2% (-D"x2%] (35)
with k;, =k, /K andK = Eh/(1— z?).
Inlight of Egs. (27-29), Egs. (12-14) can be rewritten as
u(x,) = fam(pu'“(x) cosnd (36)
m=0
V(x,0) = ¥ b oM (x)sinng
m=0
(37)
and w(x,0) = ¥ c,o"(x)cosnd , (38)
m=0
where
el (x)=cosA x+&(x)"Qr (¢ =u,v,w) (39)
with
gl(x) (5m
E(x)" = 62l : Q) =40 (a =u,v) (40,41)
$3(x) 0

a(X)
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Qr=Qu and QI =(H,)'Qr . (42,43)

The Rayleigh-Ritz method will be employed here to determine the Fourier
coefficients. The potential energy consistent with the Donnell-Mushtari theory can be
expressed as

V_Ejlrzf{(au aV ] _ (_ )_(_4_ j+M(a_v+a_uj +
2 00|\ 0OX R@G R Ro6 R 2 ox Ro#

2 2 2 2 2 2 2
K[ T8 W) ooy LW W | OW ) Rayd g
OX R“060 ox° R<°06 Roxoé

2
+1/2 [[k,u? + k,v2 + kw? +k, (6w/ox)*],_,Rd@
0

27
+1/2 [[ksu? + kgv2 + k,w? + kg (6w/ox )], RdO . (44)
0

Thetotal kinetic energy is calculated from
T - %ﬂ” phl(@u/aty + (v/at) + (ow/ot ) |Rdxd 6 . (45)
00

By making use of Egs. (44) and (45), the Rayleigh-Ritz procedure will lead to a final
system equation for the Fourier coefficients:

Ass Asﬁ Asr 3 M Ss 0 O 1

AT A” A"[Dbl-0% 0O M¥ 0 [{bl=0 (46)
AsrT A@I’T Arr E O 0 M r E

where

— T

A= {210,851, Ay e Ay | o (47)

" T

B = {byy, 0y ey By oo By | (48)

—_ T

C= {clo,cll,..., Co e Co } : (49)
SS l n mm'

N = 015+ 0 2R @00 (0)+ 2 gl (W (L], (50)
S mm ' 1 mm

Arr‘?nmn 5nn'[lun Iuv ,10 %I 01] (51)

Asr:m mn" T 5 g Il:?lvmlO ' (52)

n2 1 mm 2 m m' 2 S m m'
N = Sl 1+ B+ 2Rl 0 0+ gl (L (L], (59)
Aanl;n ,m'n’ = 5nn‘ RleTvaO ! (54)
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69 1 mm n4 mm' 2 mm'
A% =00 + [ +R—I o +2(1- ,u)—l

ww , 22

R2IWWOO ww,11

T 1+ 2Rl 0 (0)+ 2Rl (Dl (D) + (69

L 2¢ 0000 005 (0) 20 090 (L) D0y (L),

L ox O L ®  ox ox
Ivlrsnsn,m'n _§nn phl quO’ Mgwanmn _5nnph|w00’ (56)
M :n,m'n' = 5nn/5h| vTvrvnOO (p’\ = 10 / K) 1 (57)
mm’ a " aq¢m'
and 1™ =2/LJ 8(0" axqﬂ dx (a, =u,v,w) . (58)

Equation (46) represents a characteristic equation for a matrix eigenproblem
from which the eigenvalues and eigenvectors are readily determined. It should be
noted that the components in each eigenvector are actually the Fourier expansion
coefficients for the corresponding mode whose physical shape can be directly
calculated from Egs. (36-38). Obvioudy, in actual numerical calculations, the
displacement expansions will need to be truncated to include only a finite number of
terms.

RESULTSAND DISCUSSIONS

As an example, we consider a cylindrical shell that is simply-supported at each end.
The simply supported boundary condition is specified as:N, =M, =v=w=0. In
term of the restraining springs, this boundary condition can be easily achieved by
letting k,q =k;; =ccandk,; =k,s =0 (the infinite stiffness is actualy
represented by alarge number, 10, in actual calculations).

Table 1. Frequency parameters, Q = wR+/p(1— 1?)/ E , for asimply-supported shell:
a=4R , h/R=0.05 and £=0.3.

2
Mode Q=wR\p(l-u°)IE
0 1 2 3 4
m=1, Current 0.464648  0.257385 0.127128  0.143327  0.234822
Exact 0.464648  0.257385 0.127128  0.143327  0.234822
m=2, Current 0.928907  0.574179 0.337652  0.248813  0.285620
Exact 0.928907  0.574176 0.337649  0.248810  0.285619
m=3, Current 0.948172  0.764375 0.532951  0.399893  0.383688
Exact 0.948172  0.764355 0.532923  0.399865  0.383667
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Theresultsin Table 1 are calculated by truncating the series expansions at M=10. To
example the accuracy and convergence of the solution, Table 2 compares the

frequency parameters, Q = wR./p(1- x*)/E , obtained using various numbers of

terms in the series expansions. The excellent accuracy and convergence of the
current solution are evident from these results.

Table 2. The frequency parameters, Q = wR+/p(1- 1*)/E , obtained using various
numbers of terms in the displacement expansions.

Number of terms Q=R+ pl-u?)/E

used in the series

0 1 2 3 4
M=5 0.464652  0.257389  0.127132  0.143329  0.234823
M=7 0.464649  0.257386  0.127129  0.143327 0.234822
M=9 0464648 0257385  0.127128  0.143327  0.234822
M=10 0.464648  0.257385  0.127128  0.143327  0.234822

Next, consider a cylindrical shell clamped at both ends. The clamped condition
means. u=v=w=0ow/ox=0. Under the current method, the clamped-clamped
boundary conditions are considered the same as the ssmply-supported except that the
stiffness constants for the restraining springs now all become infinitely large. The
dimensions for the shell are as follows: a=0.502 m, R=0.0635 m and h=0.00163 m.
The material properties are chosen as: E=2.1x10", 1=0.28 and p=7800. Listed in
Table 3 are the natural frequencies for some lower-order modes.

Table 3. The natural frequencies for a clamped-clamped shell.

Current Ref. [4]" Current Ref. [4]

Mode m=1 m=2
n=1 1886.74 2035.05 3854.75 4302.05
2 934.220 971.531 2039.66 2189.59
3 982.265 990.339 1454.80 1500.07
4 1598.55 1600.90 1769.54 1782.28
5 2484.78 2486.49 2572.31 2578.07

* Note: Calculated using Eq. (12-26) on page 310 of Ref. [4].

Now let us assume that in the above example the clamped condition at x=a is

modified to being free while the left end remains the same, that is,

k, =k, =k; =k, =00 and kg =k, =k, =kg =0. The natural frequencies for
some of lower order modes are given in Table 4.

It should be noted that although meaningful differences are observed for certain
frequency pairs, the comparisons are generally considered satisfactory in view that
the solution schemes are considerably different. In the last two examples, the series
expansions have been truncated to M=15.
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Table4. Natural frequencies for a clamped-Free shell.

Current Ref. [4] Current Ref. [4]

Mode m=1 m=2
n=1 508.860 505.513 2109.47 2497.59
2 413.377 399.676 1049.11 1051.41
3 867.385 865.162 1038.03 1016.06
4 1563.38 1563.47 1615.02 1622.82

CONCLUSIONS

A genera method is developed for vibration analyses of cylindrical shells with genera
boundary restraints. This method offers a unified solution for various boundary conditions.
Different boundary conditions can be effectively created by simply modifying the stiffness
constants for the restraining springs. Since the displacements on a shell is represented in
terms of a complete set of closed-formed basis functions, this method will involve much
smaller number of degrees of freedom as compared with the grid-based methods such as
FEM. In addition, the sinusoidal basis functions will better capture the wave behavior of the
structural vibration at higher frequencies.
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