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Abstract 
New approximate analytical model for the prediction of the frequency and other parameters 
of the shock-wave noise of supersonic jets is suggested. Some special features of shock-wave 
structure (triple configurations of stationary shocks) are studied in connection with shock-
wave noise problem. 

INTRODUCTION 

Generation of intensive discrete noise by supersonic gas jets depends on their shock-
wave structure. For example, auto-oscillations evidently occur at small supersonic 
Mach numbers where solutions for both stationary regular and Mach reflections do 
not exist [2]. 

Incident shock geometry is supposed to be key parameter defining shock-wave 
noise frequency. Unlike popular Powell’s scheme, proposed physical model of 
discrete noise generation is based on treatment with jet barrels like volumes with 
elastic walls and corresponding natural frequencies. Shock-wave structures are treated 
like three-dimensional Helmholtz resonators or systems with two or three resonance 
frequencies, etc. Natural frequencies can be calculated according to classical works of 
Rayleigh, Helmholtz and others. Comparison of the numerical (modified Godunov-
type schemes were used) and experimental data reveals that natural frequencies were 
successfully (with 5-10% error) estimated analytically.  

Another possible reason of the oscillations at the discrete frequencies is the 
enormous difference of some parameters (stagnation pressures, gas velocity) of flows 
separated by the slipstream emanating from the triple point of Mach reflection is also 
expected to be source of auto-oscillating effects. This analytical study also defines 
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extreme differences of flow parameters downstream triple configurations. 

ANALYTICAL MODEL OF SUPERSONIC GAS JET NOISE 
GENERATION 

Except of immediate studies of gas dynamics and geometrical parameters of 
supersonic gas jet flows, aeroacoustical processes (i.e. the generation of the acoustical 
fields by these jets) draw the scientific attention traditionally (see, for example, [6]). 
Several approximate models trying to clarify the physical mechanism of generation of 
the acoustical waves by gas streams are worked out nowadays. Gasodynamical 
regimes of the stream (supersonic or subsonic, incalculability, flow stucture, etc.) are 
primarily sufficient in noise generation. 

Lighthill’s model of acoustical analogy, Powell’s model of discrete-frequency 
shock-wave noise, model of Mach stem oscillations are accepted universally. 

Basing on our studies of gas dynamics of imperfectly expanded supresonic jets, 
we suppose now new physical and mathematical model of shock-wave discrete-
frequency noise generation which differs from Powell’s model, being free from a 
number of its disputable assumptions and restrictions.   

We regard the shock-wave structures (the “barrels”) of incalculable supersonic 
jets as volumes with elastic boundaries. As any physical volume, these structures 
have own natural frequencies with harmonics that depend on its dimensions, 
geometry, presence of orifices, etc. 

Different mechanisms of natural frequency excitation in these structures can be 
presented by such models of noise generation as Helmholtz volume resonator with 
one or two orifices, quarter-wave and half-wave noise emitters, two-resonant and 
three-resonant systems, and so on. Their natural frequencies can be computed using 
the following relations: 
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Here  and  are nozzle throat diameter and length, correspondingly;  are Γd Γl 2,1,0V
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volumes of the given resonators; ΣΣ = fn π2  is the cyclic frequency; ΓΓ= lSK  is 
throat conductivity;  and  are nozzle exit section and Mach disc diameters, 
correspondingly;  is stagnation sound velocity. Formula (1) relates to three-
dimensional Helmholtz resonator with plane throat; (2) relates to three-dimensional 
Helmholtz resonator with long throat; (3) – to quarter-wave generator (oscillator) 
with higher harmonics; (4) – to half-wave generator with higher harmonics; (5) – to 
three-dimensional Helmholtz resonator with two orifices; relation (6) describes the 
two-resonant system. 
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Figure 2 – discrete frequencies as functions of jet incalculability 

 Physical model written earlier allows us to estimate the range of discrete 
frequencies emitted depending on the geometrical parameters of the shock-wave 
systems of supersonic jets. 
 Experimental research of amplitudes and frequencies of acoustical fields 
generated by supersonic air jets at Mach numbers 31−=aM , range of 
incalculabilities , and stagnation temperature 2.13.0 −=an 2740 =T  K have shown 
us that, in fact, all basic discrete tones can be calculated using the formulas of natural 
frequencies for the volumes of the first and the second barrels. 
 Depending of occasional exterior conditions, discrete frequencies can be rebuilt. 
They change, but physical mechanisms of their generation preserves. High-speed 
imaging of gasodynamical structures convinced us in the existence of discontinuity 
surface pulsations with the frequencies characteristic for prescribed discrete tones. 
 We computed the flow field and, consequently, the geometry of shock-wave 
structures using the method of characteristics and several modifications of well-
known Godunov’s method. Mach number, nozzle apex half-angle (θ ), and 
incalculability ( n ) were used as variable parameters. Different combinations of the 
parameters allowed us to fulfil the statistics of experimental and computational 
results. Dependencies for noise frequencies and geometrical parameters of shock-
wave structures were interpolated from the statistics achieved. 
 Geometrical parameters of the “barrels” calculated by the methods of 
computational gas dynamics were used for the estimations of the natural frequencies 
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of these “barrels”. The comparison of achieved data revealed that the difference 
between experimental quantities of discrete natural frequencies and computationally 
achieved ones is not more than 5-10%. For example, the following results are 
received for the nozzle at Mach number 5.2=aM , apex half-angle , and 
diameter of the critical section 

o5.7=θ
8.4=crd  mm computationally and experimentally: 

:  Hz, 5.0=n 15480=compf 15000exp =f  Hz; 6.0=n :  Hz, 
 Hz; : 

11970=compf
11950exp =f 7.0=n 11600=compf  Hz, 11400exp =f  Hz. 

 Models of monopole spherical of cylindrical sources with equivalent volume of 
surface area were used for the approximate estimations of the amplitudes of the 
discrete tones. Depending of the characteristic lengths of noise-emitting surfaces of 
jet barrels, of the discrete frequencies and corresponding wavelengths, realizations of 
“piston” and “monopole” noise sources are possible. Experimental and computational 
investigations were also done at the following conditions: exit Mach number 

; range of incalculabilities 31−=aM 0.13.0 −=n ; air as jet medium; ratio of the 
specific heats 4.1=γ ; stagnation temperature 2940 =T  K. Such quantities as discrete 
frequencies and the intensity of acoustical pressure were measured several times. 
 

Table 1 
n  f, 

 kHz 
T,  
sµ  

S,  
mm2

P∆ , 
bar 

k r,  
mm 

W,  
Wt 

J, 
Wt/m2 pL , 

dB 
eL , 

dB 
0.4 17.578 56.9 52.8 0.598 330 2.05 235 18.7 133 129 
0.5 16.015 62.4 79.6 0.499 330 2.52 246 19.6 133 131 
0.6 16.250 61.5 93.1 0.398 305 2.72 183 14.6 132 130 
0.7 16.093 62.1 105.0 0.296 302 2.89 114 9.10 130 130 

 
 Numerical studies using the method of characteristics and Godunov-type 
methods were also fulfilled for parameters and geometry of shock-waves systems. 
 Several results achieved during these investigations is presented below. Most 
general plot of experimentally and computationally achieved dependencies of natural 
frequency vs. jet incalculability is shown at Fig.1. 
 For comparison, usage of the analogous dependencies based on Powell’s model 

( )waLf p 111 0 += , 
provides us with the sufficiently overestimated quantities of the own frequency at 
small incalculability. 
 It is necessary to remark that several discrete frequencies of the different 
intensity or only alone (energy-carrying) discrete frequency can exist at the same 
initial conditions (regime of gas dynamics). As a rule, all existing discrete frequencies 
can be computed using the formulas (1-6) written earlier with the accuracy of 5-10%. 
It seems that the realization of the definite set of supposed discrete frequencies 
depends on many factors such as surrounding media parameters. 
 Results of numerical and experimental studies necessary for the computation of 
amplitudes of given discrete frequencies are given at the Table 1. Here  is jet n
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incalculability;  is the frequency of the discrete tones; f T  is the period of the 
oscillations;  is the averaged static pressure difference of the surface of 
discontinuity;  is the area of pulsating peripheral surface of the “barrel”; 

Σ∆P
S r  is the 

length scale characteristic for this pulsating surface; k  is wave number; W  is the 
acoustical power, Wt;  is noise intensity calculated;  is noise intensity 
experimentally defined. 

cL eL

 As the first approach, supposing λ≈r2 , one can calculate the acoustical power 
emanating using the relation for the “piston” emitter: , where v  is 
the velocity of oscillations at the pulsating surface; 

Sva 2
05.0 ρ⋅=W

ρ  is the density of the gaseous 
media. Table 1 contents the results of our computations and experimental data for the 
noise power and intensity at the distance of 1 m. 
 Comparison and analysis of achieved results allows us to conclude that 
supposed simple physical model of the generation of shock-wave noise as well as the 
methods of the calculation of amplitudes and frequencies can be used for the 
approximate estimations of discrete-tone noise generated by the supersonic jets. But it 
is not enough for the theoretical establishing of supposed mathematical model, and 
these studies must be continued. 

OPTIMAL SHOCK-WAVE STRUCTURES (TRIPLE 
CONFIGURATIONS) 

Shock-wave systems consisted of three stationary shocks with common (triple) point 
T  (Fig. 2,a-e) are called triple configurations. The slipstream (τ ) emanates from the 
triple point and divides the streams that have gone through the sequence of shocks 1-2 
and through the alone (main) shock 3 at another side of the triple point. 
 Three sorts of the triple configurations are distinguished according to the 
direction of flow deflection on the shocks 1-3. Flow deflection direction on the shock 
1 differs from the analogous directions on the shocks 2 and 3 at the triple 
configurations of the first type (TC-1, Fig. 2,a). Flow deflection direction at the shock 
2 differs from others at TC-2 (Fig. 2,b), and flow deflections on all shocks forming 
TC-3 (Fig. 2,c) are at the same direction. Stationary Mach configuration (SMC, Fig. 
2,d) with normal main shock is intermediate between the first type and the second 
one, and the configuration with normal shock 2 (ITC, Fig. 2,e) is intermediate 
between the second and the third type. 
 Our interest was drawn to the triple configurations due to the large differences 
of flow parameters at the slipstream emanating from the triple point. Many flow 
parameters (such as full (stagnation) pressure , temperature 0p T , acoustic 

impedance az ρ= , functions vq ρ= , , ) behind the shocks 2 and 
3 can differ in dozens and hundreds times. It is theoretically proven that shock-wave 
structures with extreme relations of all mentioned quantities exist [10, 11]. We call 
the configurations with extreme relations of flow parameters downstream optimal. 

2vd ρ= 2vpj ρ+=

 Large distinction of flow parameters (of stagnation pressures, especially) 
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downstream the triple point assists to the development of different instabilities and, 
among them, to the excitation of self-oscillations in supersonic gas jets [4, 5]. 
Connection between self-oscillation excitation and extreme triple configurations is 
already discussed in [10, 11]. At the same time, excitation of self-oscillating regimes 
of jet-obstacle interaction can be extremely undesirable (when rocket starts) and, on 
the contrary, can be used in technological processes (in metallurgy, when we create 
the pulsating flow out of the nozzles [9]). 

 
Figure 2 – Classification of the stationary triple configurations 

 Stationary shocks forming some triple configurations can have the special 
strength (  ( ) is the strength of i-th shock that is equal to the relation of static 
pressures behind and before it): the strength 

iJ 3..1=i
( )km MJ  of the normal shock at the 

stream with Mach number ; the strength kM ( )kMJ*  of stationary shock with Mach 
number behind equal to unity; the strength ( )kl MJ  of the shock with maximum 
deflection angle; and also the strength ( )kc MJ  (Crocco point) and  (constant 
pressure point) connected with the differential parameters of the flowfield [1]. Crocco 
and constant pressure points relate to the shocks that curves strongly even at the 
presence of small gradients of flow parameters downstream, so it can relate to shock 
instability and, consequently, shock-wave noise. Flow behind mentioned shocks is 
subsonic (

( kp MJ )

mplc JJJJJ <<<<*  at the same Mach number). Triple configurations 
with the shocks of special strengths are described at [10, 11]. 
 Studied relations of downstream flow parameters ( )

32 ffI f =  can be exressed 
through shock strength and flow Mach number, Among them, 
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where ( ) ( )εε ++= iii JJE 1 , ( ) ( )11 +−= γγε , γ  is the ratio of the specific heats. 
Ratios of many gas parameters (densities, temperatures, sound speeds, acoustic 
impedances, etc.) are simply power functions of ( )0pI . It is evident that the 
configurations optimal for ( )0pI  are also optimal for the set of other thermodynamic 
parameters. But configurations optimal for parameters dependent on flow velocity do 
not coincide with the optimal for ( )0pI  in common case: 



ICSV13, July 2-6, 2006, Vienna, Austria 

( )

3

21

3

2

3

2

E
EE

M
M

v
vI v =≡ , ( )

21

3

3

2

EE
E

M
MI q = , ( )

2
3

2
2

M
MI d = , ( )

2
3

2
2

1
1

M
MI j

γ
γ

+
+

=  

These relations represent the objective functions in our problem. Computational 
results for optimal triple configurations are given further at the value of 4.1=γ . 
 The fullest description of optimal triple configurations and their parameters can 
be found in [11]. Now we can only remark that optimal configuration exist, as well as 
the optimal sequences of stationary shocks at whole [3, 7, 8], at almost every 
supersonic Mach number. The configurations of the third type (TCs-3) are optimal at 
the region of small Mach numbers (beginning from 245.1=M ). Intermediate 
configurations ITCs are optimal for ( )0pI  at 596.1=M  ( ( ) 076.10 =pI  there); for ( )vI  
at  (567.1=M ( ) 085.1=vI ); for ( )qI  at 571.1=M  ( ( ) 107.1=qI ); for ( )dI  at 

 ( ); for 569.1=M ( ) 201.1=dI ( )jI  at 584.1=M  ( ( ) 090.1=jI ). After these points, 
optimal configurations belong to the second type. 
 Configurations TC-2 are optimal up to the Mach number 

( ) 254.2134 2 =−+−= εεεaM  where SMC-configuration becomes optimal for all 
objective functions. Strengths of the incident (1) and the reflected (2) shocks are 
equal at this SMC: ( ) 4.21221 =−== εJJ . It is proven [7] that the equality of the 
strengths leads to the maximum of stagnation pressure behind shock sequence when 
the production of these strength is fixed. Though this production (equal to strength 

) is not constant here, optimal SMC subordinates to this theorem. Studied ratios 

downstream this SMC are the following: 
3J

( ) 448.10 =pI , ( ) 649.1=vI , , 
, and so on. 

( ) 024.3=dI
( ) 587.1=jI

 First-type configurations are optimal at . Though, as we have seen 

earlier, maximal relations 
aMM >

( )fI  are not large at small and moderate Mach numbers, 
optimal values of these objective functions increase slowly and finitely and reach 
large quantities at hypersonic flow velocities. For example, optimal relations at 

 strive to the following limits: ∞→M

( ) 1.5292
1

0 ==
+

−
ε
ε

εpI , , ( ) 261.5=vI ( ) 8.155=dI , ( ) 41.30=qI , . ( ) 22.30=jI
But the configurations TCs-3 exist also where the relations of the parameters strive to 
the same or close values: 

( ) 1.5292
1
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( ( ) ( ) 32 411 εεε +−−=H , ). All these types of configurations 
with extremely large difference of flow parameters not exist at jet flow with Mach 
reflections: TCs-1, as a rule, appear at the intersection of two shocks of the different 
direction, TCs-3 – of the same direction. Maximal relations of flow parameters 

32 221 εεε ++−=K
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downstream the triple point of irregular shock reflection can be estimated at the 
example of SMCs in its limiting ( ∞→M ) case. Indeed, all functions ( )fI  in SMCs 
increase monotonously but reach significantly smaller values: , 

, , , 

( ) 72.690 =pI
( ) 059.5=vI ( ) 01.17=qI ( ) 05.86=dI ( ) 17.15=jI . So the optimization of triple 

configurations significantly changes the parameters downstream. 
 Flow downstream the shock 3 at the majority of optimal configurations is 
subsonic. This promotes the reverse influence on the system from the obstacle 
upstream and do not prevent the appearance of self-oscillating regimes. Practical 
importance of not relations, but differences of such flow parameters as stagnation 
pressures, temperatures, acoustic impedances [11] increase at large Mach numbers. 

CONCLUSIONS 

Study of the connection between supersonic gas jet noise of discrete frequencies and 
special (optimal) features of shock-wave flow structures seems to be at the initial 
stage but provides us with simple and rather accurate approximate models.  

This work was supported by the Russian Foundation for Basic Research 
(project code 04-01-00713). 
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