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Abstract 
In this paper the Boundary Element Method (BEM) is used for determining the transfer 
matrix that relates the internal field pressures to the source excitation inside an arbitrarily 
shaped enclosure with a known impedance boundary condition. Given a distribution of point 
sources inside an enclosure the transfer matrix is evaluated applying the BEM, and the 
optimal solution for the production of a desired sound field is then obtained by minimising, in 
the least square sense, the difference between the reproduced and the desired sound field at a 
finite number of receiving positions. Simulation results for the production of a plane wave 
inside an L-shaped and a regular hexagonal room are presented to validate the feasibility of 
the process. 

INTRODUCTION 

With the relatively recent arrival of digital representation and multiple channels of 
audio, new possibilities of sound-field control and sound reproduction have been 
investigated. In a broad sense, most of these techniques try to increase the listening 
area and to create a desirable 3D or 2D auditory scene. Sound field reproduction has 
been investigated in both free field [1] and in-room conditions [2],[3]. In the latter 
case, the reproduction system has to compensate for the room’s natural dynamics 
which can vary in an unpredictable manner because of differences in the geometry or 
because of reflections.  

In this paper BEM is used to evaluate the transfer matrix that relates the internal 
field pressures to the source excitation in an enclosure of known specific impedance 
boundary conditions. Conceptually, the reproduction process can be investigated in 
any enclosure independently of its shape or its boundary properties. 
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THEORETICAL MODEL 

This section introduces the theoretical model on which the simulations are based. The 
discussion begins by assuming that the transfer matrix that relates the internal field 
pressures to the source excitations is already known. How this relation is achieved 
will be shown after the oncoming section, where the BEM formulation will be 
explained and coupled to the sound field reproduction process. 

Control Modelling  

The reproduction system is characterized by M sound-pressure sensors surrounded by 
L sources inside the enclosure. The M sensors are properly distributed in the 
enclosure in the sense that they cover the listening zone of interest and their spacing 
is capable of sampling the properties of the generated field adequately. The 
investigation here focuses on the determination of the optimal source strength vector 
S=[S1…Sj…SL]T that when applied on the sources an actual field is produced as close 
as possible to a desired one. The actual field, which is sampled at the M receiving 
positions at , is expressed by the pressure vector  which is related to 
the source excitation by  
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Here Z is an MxL transfer matrix which is obtained by BEM. In what follows, the 
number of sensors is considered to be greater than the number of sources (M>L), and 
thus the system in Eq. (1) is over-determined. Let now  be the vector of the desired 
values of pressures over the above positions. If  is replaced by  in Eq. (1), 
Singular Value Decomposition (SVD) can be used to solve for the optimum complex 
source strength vector S. The effectiveness of the reproduction process is measured 
by the fitting in a least square sense between the desired field pressure and the 
reproduced field, where the error at the m

fp
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th receiving point is defined as the difference 
between the actual and the desired sound pressure. The error is averaged over all the 
sensor positions and normalised to the desired pressure amplitude, leading to the 
definition of the cost function defined by 
 

2

1

)()(ˆ1 ∑
=

−==
M

m
mfmf

f
H
ff

H
f

H

ppJ rr
pppp

ee ,                           (2) 

 
where e is a Mx1 vector containing the errors at the receiving positions and is 
the desired pressure at the m

)( mfp r
th receiving position. Obviously, a small value of J 

denotes a good fit between the desired and the reproduced field pressures.  
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Relating the Field Pressure to the Source Excitation 

For a time harmonic acoustic field in a closed region D with boundary S and exterior 
E the well known Kirchhof-Helmholtz integral equation can be modified to include 
the spherical wave potential of L point sources radiating inside the enclosure and 
expressed as follows [4] 
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where  is the surface unit normal vector at the surface point r0n̂ 0, p(r0) is the pressure 
at that point, p(r) is the pressure at the field point r, rl and Sl denote the position 
vector and the strength of the lth point source respectively, and G is the free-field 
Green’s function, defined as ,4/)exp()( 0 RikRG π−=− rr  where k is the wave number 
and 0rr −=R  denotes the distance between the field and the surface point. In this 
paper the constant boundary element formulation is considered, and thus the acoustic 
pressure and the normal velocity are considered to be constant over each triangular 
element and equal to their respective values at the centre of each element. In this way 
a ‘smooth’ boundary is always achieved. 

Let the enclosure be bounded by surfaces of known specific normal acoustic 
impedance,  )ˆ//(/z 00 n∂∂−== ppρiup n ω , where p is the surface pressure,  ρ0 is the 
density of the medium, ω is the angular frequency, and  is the unit vector normal 
to the surface.  By dividing the boundary into N constant triangular elements and 
taking the field points at the element’s centre Eq. (3) is modified to the following 
matrix form  

0n̂
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Here  and  are Nx1 complex vectors denoting the acoustic pressure and the 
normal  component of the particle velocities on the surface respectively, H  and G are 
the NxN influence matrices, and c is the Nx1 vector  
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where rn and rl are the position vectors of the nth element and the lth point source 
respectively. Considering now M field points inside the enclosure, the matrix 
expression of Eq. (3) takes the form 
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Here Hf and Gf are MxN matrices and cf is similar to Eq. (5), but this time rn is 
replaced by rm which is the position vector of the mth field point.   
  According to the impedance boundary condition the pressure and the normal 
velocity vector on the surface are related by 
 

,Rpv =                                                         (7) 
 

where . Inserting Eq. (7) into Eqs. (4) and (6) one 
obtains 
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If exists then p can be solved from Eq. (8), and with proper factorisation 
of the vectors c and c

1−−GR)(H
f  Eq. (9) can be written as 

 
ZSp =f ,                                                      (10) 

 
where Z is the MxL transfer matrix that relates the M internal field points to the L 
point source excitations and S is the Lx1 vector containing the strengths of the point 
sources. The optimal source strength vector S can be calculated using the analysis of 
the previous section. 

SIMULATION RESULTS 

To validate the feasibility of the process simulation results for the case of generating a 
plane wave inside an L-shaped and a regular hexagonal room are presented. 

Generation of a Plane Wave in an L-Shaped Room 

The first example for the validation of the reconstruction process is an L-shaped room 
with dimensions Lx = 3.5 m, Ly = 1.5 m, and Lz = 0.3 m, depicted in Figure 1. The 
boundary of the room is divided into 1712 constant triangular elements which are 
given a fixed impedance of z=300+300i, corresponding to a very hard and reflecting 
surface. Ninety sensors are equally distributed over the two sensor planes that are 
represented by the small dots in Figure 1. Twelve point sources, represented in the 
figure by the small squares, are positioned in three sets of four sources with the first 
set being at x=0.1  m with y=d/8, 3d/8, 5d/8 and 7d/8, the second set being at 
x=y=2+d/8, 2+3d/8, 2+5d/8 and 2+7d/8 on the symmetry line, and the last set being at 
y=0.1 m with x=d/8, 3d/8, 5d/8 and 7d/8, where d is the actual width of the enclosure 
being equal to 1.5 m. Since the height of the room is much smaller than the other two 
dimensions the resulting field is two-dimensional in the frequency range considered 
here, and thus the vertical positioning of the sources and the sensors does not affect 
the result. Hence all the sensors and sources are assumed to be at the plane at z=0.15 
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m. The room geometry as well as the source and sensor configuration is symmetric 
with respect to the x=y line. 
 

 
 

Figure 1 -  The distribution of 90 sensor positions and 12 point sources inside the L shaped 
room. The height of the enclosure is 0.3 m 

 
The challenge in the first simulation is to produce two perpendicular plane 

waves that travel simultaneously over the x΄ and y΄ direction defined by the secondary 
set of coordinates shown in Figure 1. The amplitude of the desired sound pressure is 
set to a constant value for all the sensors. The phase of the sound pressure though 
varies as kx΄ for the error sensors at the first plane and as ky΄ for the error sensors at 
the second plane, so that two propagating plane waves are simulated. The number of 
four sources along the axis perpendicular to the direction of propagation was found to 
be the minimum number required for proper plane wave reproduction in the given 
frequency range. All the elements of the enclosure are given the same high value of 
acoustic impedance corresponding to a hard and reflecting surface.   

 

 
Figure 2 - Amplitude of the sound pressure in the L-shaped room caused by excitation of a 

point source at (0.1, 0.1875) m at 415 Hz 
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It is interesting to compare the sound pressure of the resulting sound field to the 
sound pressure of the sound field generated by exciting the enclosure with a single 
source as shown in Fig. 2. As can be seen from Fig. 3, a proper adjustment of the 
sources strengths can remove the spatial fluctuations of the sound pressure so that a 
uniform sound pressure in almost the entire listening area is achieved. 

 

 
Figure 3 - Amplitude of the sound pressure as a result of two plane waves at 415 Hz 

 

Generation of a Plane Wave in a Regular Hexagonal Room 

A regular hexagonal room of height 0.3 m and side length of 1.2 m is selected for this 
simulation. Eighteen piston sources are placed co-planar to the six side walls in order 
to control the internal field pressure. The radius of each piston is 0.1 m, and three 
pistons are placed at each side wall as shown in Figure 4. A total number of 3384 
constant triangular elements is used for meshing the enclosure, 720 of which are used 
for the piston sources and the rest 2664 are given a fixed impedance of z=300+300i, 
corresponding to a very hard and reflecting surface. The input signals for the pistons 
are determined through the reproduction process in terms of complex velocity values 
under the assumption that each piston vibrates as a rigid body. 

A rectangular grid of 13x11 error sensors is placed on the x-y plane at the height 
of z=0.15 m, covering a large portion of the enclosure as shown in Figure 4. The 
distance between adjacent sensors is 0.1 m along both x- and y- axes allowing for a 
proper spatial sampling in all the considered frequency range. The image field is a 
plane wave of unit amplitude travelling parallel to the y-axis. The amplitudes of the 
sound pressure generated when the room is excited by just one piston source at 346 
Hz and when the plane wave is generated inside the room are shown in Figure 5 and 6 
respectively. It is evident that a proper source strength adjustment in this kind of 
enclosure can compensate for the undesired spectral coloration over an area that 
covers almost the entire volume of the enclosure. 
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Figure 4 - Distribution of 143 sensor positions and 18 piston sources inside the regular 

hexagonal room 
 

 

 
Figure 5 - Sound pressure amplitude caused by the excitation of the hexagonal room with just 

one piston source at 346 Hz 

CONCLUSIONS 

In this paper the theoretical possibilities for sound field reproduction using a transfer 
matrix that is based on algebraic manipulation of the equivalent boundary element 
problem has been investigated. BEM can be applied to sound field reproduction with 
satisfactory quantitative reproduction results if the acoustic impedance of the 
boundary is specified. This method can be applied to arbitrarily shaped enclosures 
where an analytical solution is not known. Furthermore, sources of more complicated 
shape and radiation behaviour than the simple monopole can be modelled. 
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Figure 6 - Sound pressure  amplitude as a result of the reproduction of a plane wave at 
346Hz 
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