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Abstract

Modelling sound propagation over large domains presents severe cjealaith respect to
computational resources. In general, the direct solutions of the sysjigati@ns arising from
the full field discretization for problems of any significant size of practerajineering in-
terest cannot be attempted. The present study proposes an efficiativetesolution of a
three-dimensional Helmholtz equation. The discretization is done using a Bésed Fi-
nite Difference scheme known as the Wave Expansion Method (WEM)WHBRK requires
only around 2-3 nodes per wavelength to obtain accurate solutions wiféch a significant
improvement upon conventional Finite Element/Finite Difference techniquashwequire
approximately 8-10 nodes per wavelength.

INTRODUCTION

Modelling sound propagation for problems of practical engineering istéig@/e always been
a difficult task due to the amount of computational costs associated with thearabmeth-
ods for the solution of the three dimensional Helmholtz equation have begoga® by
various researchers [6, 7, 8].

The conventional acoustics analysis methods such as the Finite Differ@tiakl), the
Finite Element (FEM) and the Boundary Element techniques consider theetivabnature
of wave propagation but at a relatively high computational cost. Thebaitges require the
whole domain to be discretized with a smooth mesh in order to obtain accurate slutio

In this study, a suitable iterative solver is explored to run in conjunction with\tiee
Expansion Method which offers a distinct advantage over conventil®&D techniques in
terms of discretizational efficiency.



Acoustic Problem Definition

The propagation of harmonic acoustic waves is governed by the Helmhakitie [9]

Vp+kp=0 1)

The ratio

k=2 2)
C

is the wavenumber and=2r f is the circular frequency.

The performance of the numerical system is assessed by the numbeesfper wave-
length required by the discretization to produce accurate results. Theenwhhodes per
wavelength is given by Eq. 3

ppw = ﬁ 3)

whereh is the maximum nodal spacing in the mesh.

Wave Expansion Method

As mentioned previously, the cost of numerical methods is associated withuthieen of
nodes per wavelength required for the accurate discretization of théeprg11]. The Wave
Expansion Method solves the Helmholtz Equation by domain discretization i.engelae
value of an unknown discrete point of the domain to a set of neighborimgspd@asically,
the method provides an interpolation procedure for Eq. 1 using planesveasvieindamental
solutions. This method is primarily derived from the Green’s Function Diigatton method
developed by Caruthegs al. [3]. The method is very flexible and can be formulated on both
structured and unstructured meshes [2]. For a detailed descriptiohthbdlVave Expansion
Method and the boundary conditions implementation the reader is referrédgpl[1, 12].
Conventional FE/FD methods require approximately around 8-10 nodespelength
to achieve accurate solutions [17]. The value of the WEM [3, 4, 5, 12]di¢ise fact that it
requires only between 2-3 nodes per wavelength to achieve accudaterarergent solutions.

Solution Procedure

Any numerical technique is incomplete without an adequate solution prezediny type of
discretization assembles the equations in the form as shown in Eq. 4

Ax=Db (4)



where A is the coefficient matrixg is the solution vector andlis determined by the
boundary data.

The coefficient matrix4, obtained by the WEM is sparse, unsymmetric and complex.
The solution of the equations by a direct elimination method utilizes a lot of mematy an
CPU requirements, especially in three-dimensions. This is due to a large "tiliah can
overwhelm the capacity of the largest computer resources that curexigty Moreover, the
indefiniteness of the matrix Eq! 4 at large wavenumbers presents a majouldiffivhen
attempting the procedure with iterative solvers.

Hence, we resort to finding a solution by employing a Krylov subspace mé¢thd3,
16, 15] with a suitable preconditioner. In general, in a preconditionegisy€q. 5 is solved
rather than Eq. 4.

AMly=b (5)

where

X = M_ly (6)

In this study, we have employed the BI-CGSTAB method as described bgiéfarorst
[16] as an iterative solver. The preconditioner here is constructeddopakbthreshold strategy’
as described by Saad [14].

However, a significant disadvantage with regard to using the 'dualhblgstrategy’
algorithm is that it is not an easy task to predict the accurate 'drop tolergalue [10, 14].
These values are highly problem dependent and are usually acquivadltta 'trial and error’
approach with a small number of sample matrices. In our study, these vatuebtained
after tests based on the sample matrices obtained after discretization whitggbeanind
the memory requirements posed due to the *fill-in’ obtained during the LU faetawn.

Results are presented for a set of problems discretized using the WEM: simula-
tions, the the zero vectar is the initial guess and iterations are carried out until the residual
vector attains a tolerance level t6—3. The equation solver has been implemented in Mat-
lab using double precision accuracy. The problems reported hereinssbred on an IBM,
Pentium-IV machine with 882 Mb of RAM.

The sparsity pattern of the matrix obtained by the discretization of the Helmhal-Eq
tion by the Wave Expansion Method on structured meshes is shown in Figilel Talble 1
presents the performance of the numerical system using the WEM.



Figure 1: Sparsity Pattern of the stiffness Matrix discretized with a structured mesh

3
nz = 17757796

Table 1: Performance of the Numerical System with the preconditioner

S.No | No.of nodes| Mh | freq (Hz) | iter | CPU time (s)| Cost (MB)
1 63756 3 100 332 233.72 56
2 78608 3 4000 437 369 65
3 171666 3 12000 | 626 1201.4 108
4 375821 3 12000 | 843 3630.43 271
5 1030301 3 12000 | 1184| 13395.54 583

The same set of problems have been studied without the usage of thaditiecer
and the results have been presented in T2ble

Table 2: Performance of the Numerical System without the preconditioner

S.No | No.of nodes| Mh | freq (Hz) | iter | CPU time (s)| Cost (MB)
1 63756 3 100 333.5 245.81 49
2 78608 3 4000 437 367.73 54
3 171666 3 12000 | 625.5 1198.04 91
4 375821 3 12000 | 845 3617.21 237
5 1030301 3 12000 | 1195| 14330.34 545




Fig. 2 shows the sound pressure distribution obtained on a cube of 1rotaheumber
of equations was 1030301 and the domain was discretized using a foygoieh2000 Hz
and a mesh spacing of 0.01m, thus giving an overall nodal density oh@r®wodes per
wavelength.

Real Part of Pressure distribution over a box shaped domain,
freq=12000 Hz.

Figure 2: Sound Pressure distribution for a box shaped domain

Summary

This paper considers the usage of the Wave Expansion Method for mgdsdiimd propa-
gation of problems of real engineering interest. The method proves tdibierffor a wide

range of frequencies (100 Hz to 12,000 Hz). It also proves to be stablarious types
of boundary conditions and high frequency scattering problems [Z.ultimate effective-
ness of the WEM not only depends on the discretization procedure usedsb on the ef-
ficiency of the solution techniques. The results presented here shotih¢h&tEM is highly

efficient computational technique particularly when compared with conveadtieE/FD and
BEM techniques. The results shown in Table 2 indicate that the method is siaféibignt

enough to not press the demand for the construction of a preconditidrien wan be an
expensive task. By using the BI-CGSTAB algorithm the scope for péisafies also realized.
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