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Abstract
Modelling sound propagation over large domains presents severe challenges with respect to
computational resources. In general, the direct solutions of the system equations arising from
the full field discretization for problems of any significant size of practicalengineering in-
terest cannot be attempted. The present study proposes an efficient iterative solution of a
three-dimensional Helmholtz equation. The discretization is done using a WaveBased Fi-
nite Difference scheme known as the Wave Expansion Method (WEM). TheWEM requires
only around 2-3 nodes per wavelength to obtain accurate solutions which offers a significant
improvement upon conventional Finite Element/Finite Difference techniques, which require
approximately 8-10 nodes per wavelength.

INTRODUCTION

Modelling sound propagation for problems of practical engineering interest have always been
a difficult task due to the amount of computational costs associated with them. Several meth-
ods for the solution of the three dimensional Helmholtz equation have been proposed by
various researchers [6, 7, 8].

The conventional acoustics analysis methods such as the Finite Differences (FDM), the
Finite Element (FEM) and the Boundary Element techniques consider the theoretical nature
of wave propagation but at a relatively high computational cost. These techniques require the
whole domain to be discretized with a smooth mesh in order to obtain accurate solutions.

In this study, a suitable iterative solver is explored to run in conjunction with theWave
Expansion Method which offers a distinct advantage over conventionalFE/FD techniques in
terms of discretizational efficiency.



Acoustic Problem Definition

The propagation of harmonic acoustic waves is governed by the Helmholtz equation [9]

∇
2p + k2p = 0 (1)

The ratio
k =

w

c
(2)

is the wavenumber andw=2πf is the circular frequency.
The performance of the numerical system is assessed by the number of nodes per wave-

length required by the discretization to produce accurate results. The number of nodes per
wavelength is given by Eq. 3

ppw =
c

h · f
(3)

whereh is the maximum nodal spacing in the mesh.

Wave Expansion Method

As mentioned previously, the cost of numerical methods is associated with the number of
nodes per wavelength required for the accurate discretization of the problem [11]. The Wave
Expansion Method solves the Helmholtz Equation by domain discretization i.e. relating the
value of an unknown discrete point of the domain to a set of neighboring points. Basically,
the method provides an interpolation procedure for Eq. 1 using plane waves as fundamental
solutions. This method is primarily derived from the Green’s Function Discretization method
developed by Carutherset al. [3]. The method is very flexible and can be formulated on both
structured and unstructured meshes [2]. For a detailed description about the Wave Expansion
Method and the boundary conditions implementation the reader is referred to [4, 5, 11, 12].

Conventional FE/FD methods require approximately around 8-10 nodes per wavelength
to achieve accurate solutions [17]. The value of the WEM [3, 4, 5, 12] liesin the fact that it
requires only between 2-3 nodes per wavelength to achieve accurate and convergent solutions.

Solution Procedure

Any numerical technique is incomplete without an adequate solution procedure. Any type of
discretization assembles the equations in the form as shown in Eq. 4

Ax = b (4)



whereA is the coefficient matrix,x is the solution vector andb is determined by the
boundary data.

The coefficient matrixA, obtained by the WEM is sparse, unsymmetric and complex.
The solution of the equations by a direct elimination method utilizes a lot of memory and
CPU requirements, especially in three-dimensions. This is due to a large ’fill-in’ that can
overwhelm the capacity of the largest computer resources that currentlyexist. Moreover, the
indefiniteness of the matrix Eq. 4 at large wavenumbers presents a major difficulty when
attempting the procedure with iterative solvers.

Hence, we resort to finding a solution by employing a Krylov subspace method [1, 13,
16, 15] with a suitable preconditioner. In general, in a preconditioned system, Eq. 5 is solved
rather than Eq. 4.

AM−1y = b (5)

where

x = M−1y (6)

In this study, we have employed the BI-CGSTAB method as described by Vander vorst
[16] as an iterative solver. The preconditioner here is constructed by a’dual threshold strategy’
as described by Saad [14].

However, a significant disadvantage with regard to using the ’dual threshold strategy’
algorithm is that it is not an easy task to predict the accurate ’drop tolerance’ value [10, 14].
These values are highly problem dependent and are usually acquired through a ’trial and error’
approach with a small number of sample matrices. In our study, these values are obtained
after tests based on the sample matrices obtained after discretization while bearing in mind
the memory requirements posed due to the ’fill-in’ obtained during the LU factorization.

Results are presented for a set of problems discretized using the WEM. Inthe simula-
tions, the the zero vectorx0 is the initial guess and iterations are carried out until the residual
vector attains a tolerance level of10−3. The equation solver has been implemented in Mat-
lab using double precision accuracy. The problems reported herein were solved on an IBM,
Pentium-IV machine with 882 Mb of RAM.

The sparsity pattern of the matrix obtained by the discretization of the Helmholtz Equa-
tion by the Wave Expansion Method on structured meshes is shown in Fig. 1 while Table1

presents the performance of the numerical system using the WEM.



Figure 1: Sparsity Pattern of the stiffness Matrix discretized with a structured mesh

Table 1: Performance of the Numerical System with the preconditioner

S.No No.of nodes λ/h freq (Hz) iter CPU time (s) Cost (MB)
1 63756 3 100 332 233.72 56
2 78608 3 4000 437 369 65
3 171666 3 12000 626 1201.4 108
4 375821 3 12000 843 3630.43 271
5 1030301 3 12000 1184 13395.54 583

The same set of problems have been studied without the usage of the preconditioner
and the results have been presented in Table2.

Table 2: Performance of the Numerical System without the preconditioner

S.No No.of nodes λ/h freq (Hz) iter CPU time (s) Cost (MB)
1 63756 3 100 333.5 245.81 49
2 78608 3 4000 437 367.73 54
3 171666 3 12000 625.5 1198.04 91
4 375821 3 12000 845 3617.21 237
5 1030301 3 12000 1195 14330.34 545



Fig. 2 shows the sound pressure distribution obtained on a cube of 1m. Thetotal number
of equations was 1030301 and the domain was discretized using a frequency of 12000 Hz
and a mesh spacing of 0.01m, thus giving an overall nodal density of around 3 nodes per
wavelength.

Figure 2: Sound Pressure distribution for a box shaped domain

Summary

This paper considers the usage of the Wave Expansion Method for modelling sound propa-
gation of problems of real engineering interest. The method proves to be efficient for a wide
range of frequencies (100 Hz to 12,000 Hz). It also proves to be stablefor various types
of boundary conditions and high frequency scattering problems [2]. The ultimate effective-
ness of the WEM not only depends on the discretization procedure used but also on the ef-
ficiency of the solution techniques. The results presented here show thatthe WEM is highly
efficient computational technique particularly when compared with conventional FE/FD and
BEM techniques. The results shown in Table 2 indicate that the method is suitablyefficient
enough to not press the demand for the construction of a preconditioner which can be an
expensive task. By using the BI-CGSTAB algorithm the scope for parallelism is also realized.
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