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Abstract 
The sound insulation provided by a single layer partition that is infinite along its plane and 
divides an infinite acoustic medium is analysed in this paper. The partition is confined 
laterally (on two sides) and the solution is obtained by means of a Boundary Element Method 
formulation in the frequency domain, where only the discretization of the restricted surfaces 
of the panel is required since Green’s functions are used for the layered medium. The 
confinement is achieved by ascribing null displacements to the two boundaries defined by the 
width of the panel. These boundaries may define panels of varying sizes. The responses are 
calculated assuming that the incident wave field is generated by cylindrical line loads placed 
in the acoustic medium. Material losses are taken into account by using a complex Lamé 
constant and a complex Young’s modulus. The analysis is performed in the frequency 
domain, taking the solution for no confinement as a reference. Simulations are performed for 
a partition made of various materials, with different lengths and thicknesses. Wave 
propagation features, including the influence of the vibration modes of a confined partition 
and the coincidence effect, are analysed.  

INTRODUCTION 

The transmission of sound through a partition has been widely investigated over 
recent years. One approach that has been used to predict sound transmission assumes 
that the partition behaves like a group of infinite juxtaposed masses with independent 
displacement and null damping forces, and that the source is a single or random plane 
wave. The well-known theoretical Mass Law is based on these assumptions. However 
the calculated results often fail to match the predictions so it has been assumed that, 
to reduce these discrepancies, a limited maximum incidence angle (i.e. diffuseness) 
should be considered. This improves the results, but differences are still found. In fact 
the finiteness of the partition and the boundary conditions may also determine the 
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acoustic response provided by the panel. In finite sized partitions additional reflected 
waves are produced in the boundaries, causing interference with the incident waves 
propagating inside the panel, and this may result in transverse panel motion. In 
addition, diffraction via the aperture that contains the panel may also determine the 
final response and therefore this factor should also be addressed.  

In the seventies, Sewell [1] derived an expression to predict sound insulation 
which assumes the resonance transmission, valid for frequencies bellow the critical 
frequency.  

More recently, M. Villot et al. [2] have proposed a technique based on the wave 
approach to predict transmission loss provided by single and multilayer partitions of 
finite size. Their model is based on a spatial windowing to introduce the diffraction 
effect associated with the finite size. A paper by Jong-Hwa et al. [3] revisits the 
problem of resonant transmission related to the sound insulation of rectangular finite 
panels in an infinite baffle, at frequencies below the critical frequency by using the 
general modal expansion method followed by Sewell. They investigated the validity 
of neglecting the resonant transmission components in the prediction of transmission 
loss by calculating the differences between the total transmission loss and the non-
resonant transmission loss.  

In this work a contribution to this problem is addressed by developing and 
applying a Boundary Element Method (BEM) model to assess the acoustic behaviour 
of single partitions confined laterally (on two sides of the partition). The responses 
are calculated for low, medium and high frequencies, assuming that the incident wave 
field is generated by cylindrical line pressure loads. Simulations are performed for a 
partition of varying materials, length and thickness, and the analysis takes the 
solution for no confinement as a reference. Wave propagation features, including the 
influence of the vibration structural modes of a confined partition and the coincidence 
effect, are analysed.  

The next section outlines the problem. The Green’s functions and the BEM model 
formulation are then described. The simulations and the discussion of the results 
complete this paper.  

PROBLEM FORMULATION 

Consider a single elastic layer of thickness h , infinite along its plane ( x  and z  
directions), confined laterally on two sides. The confinement is defined by ascribing 
null displacements to the two boundaries defined by the width of the panel (see 
Figure 1). The rigid boundaries may define a partition with a length L  along the x  
direction. Note that these boundaries only limit the panel’s dimension along the x  
direction and that in the z  direction no confinement has been defined. This layer 
divides an infinite acoustic medium with a mass density fρ , a Lamé constant fλ  and 
permits a dilatational wave velocity /f fc λ ρ= . The material properties of the elastic 
medium are the density ρ , Poisson’s ratio ν  and a Young’s modulus E . In this 
medium the propagation occurs following compressional waves with a velocity 
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material losses are considered by using a complex shear modulus and a complex 
Lamé constant. The Young’s modulus is computed as ( )1 irE E η= + , where rE  
corresponds to the classic modulus and η  is the loss factor. The Lamé constant is 
written in the same form as the Young’s modulus. 
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Figure 1 – Geometry of the problem 

When the system is excited by a harmonic line load oscillating with a frequency ω  
and acting in the acoustic medium at ( )0 0,x y , the incident pressure field at a point 
( ),x y  can be obtained in the frequency-wavenumber domain, by the following 
expression,  

( ) ( ) ( ) ( )( )2 22 i
0 0 0

i, , , H e ,
2

zk zfull
z c

Ax y k k x x y yσ ω −−
= − + −  (1) 

in which A is the wave amplitude and i 1= − ; ( )2 2
c zk c kω= − , with ( )Im 0ck ≤  and zk  

being the axial wavenumber. Note that when zk  equals zero expression (1) gives the 
incident pressure field provided by a cylindrical line load. 

GREEN’S FUNCTIONS FOR SINGLE LAYERED MEDIUM 

This section briefly describes the procedure used to obtain the 2.5D Green’s functions 
for a single homogeneous elastic layer bounded by two fluid media, when excited by 
sinusoidal harmonic line loads with different zk  values. These solutions have already 
been derived by Tadeu et al. [4] and can be expressed as the sum of the source terms 
equal to those in a full space (which can be calculated according to expression (1), 
above) and the surface terms generated by the fluid/solid interfaces. The calculation 
of the surface terms requires the knowledge of the solid layer displacement potentials 
and the pressure potentials generated by the solid/fluid surfaces. These potentials are 
written as a superposition of plane waves by means of a discrete wavenumber 
representation (after applying a Fourier transform in the x  direction). The integrals of 
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the expressions are transformed into a summation by considering an infinite number 
of virtual plane sources distributed along the x  direction at equal intervals, xL . In the 
fluid medium, pressure potentials are defined at the interfaces, whereas in the elastic 
medium, the wave field is expressed by means of pressure potentials and shear 
potentials. Details for the potentials when the load is applied in acoustic and in the 
elastic medium can be found in [4]. 
To fully define the potentials it is necessary to determine a set of coefficients by 
deriving the potentials in order to calculate stresses and displacements, and then 
establishing the appropriate boundary conditions: continuity of normal displacements 
and stresses and null tangential stresses at the interfaces. 
Once the unknown coefficients have been calculated, the displacements and stresses 
associated with the surface terms can be determined by applying partial derivatives to 
the potentials. The Green’s functions for the solid/fluid formation are then obtained 
from the sum of the source terms and the surface terms.  

BEM FORMULATION 

When the layer is assumed to be confined laterally the corresponding scattered field 
produced by the presence of the boundaries inside the layer is solved in the frequency 
domain by using the Boundary Element Method (BEM). The model used in this work 
includes the above-defined Green’s functions for a single-layer medium, thus only the 
two boundaries need to be discretized. The confinement is taken to be rigid, therefore 
null displacements are ascribed to the boundaries.  
The basic BEM equations can be found in [5], so their details are not given here. If 
we consider a virtual load ( )Px xδ − , acting in the elastic medium, at point Px  of the 
boundary, in the k  direction, and by imposing null displacements on the lateral 
boundaries, the simplified Boundary Integral equations, may be written as:  

( ) ( ) ( )
3

, , P 0
1

, , , ,  , , 0surf inc
k l k l k P

l S

t x G x x dS u x xν ω ω ω
=
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In these equations ( ), ,k lt x ω  describe the stresses in direction l  at point x  of the 
boundary S ; ( ), P , ,surf

k lG x x ω  are the Green’s functions for displacements in the single 
layered medium (obtained as described in the previous section) at point x  in direction 
l  caused by a sinusoidal line load acting at source point Px  in direction k ; 

( )0 , ,inc
k Pu x x ω  is the incident displacement field when the source is placed at 0x , 

obtained from the Green’s functions described in the previous section; ν  is the unit 
outward normal for the boundary S ; the subscripts , 1, 2, 3k l =  denote the normal (n), 
tangential (t) directions relative to the boundary surface and z  directions; ,k lC  is a 
constant that equals , / 2k lδ  for a smooth boundary, where ,k lδ  is the Kronecker delta 
function. Standard vector transformation operators are used to transform the Green’s 
functions from the Cartesian coordinate system. 
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The Boundary Integral equations are solved after discretization into N  constant 
boundary elements. The resulting integrations are calculated using a Gaussian 
quadrature scheme, except for the integrations of the source terms regarding the 
Green’s functions for the single solid layer, which are carried out analytically when 
the element to be integrated is the loaded element. 
Solving the resulting system makes it possible to find the nodal stresses. The scattered 
wave field produced by the lateral rigid boundaries at any point of the domain can 
then be calculated by applying the Boundary Integral equation. 

SIMULATIONS 

The simulations performed refer to a single layer made of glass ( 5734.3 m/sLc = ; 
3435.6 m/sSc = ; 2500ρ = kg/m3; 34 10η −= × ) or concrete ( 3498.6 m/sLc = ; 2245.0 m/sSc = ; 
2500.0ρ = kg/m3; 34 10η −= × ), dividing an infinite acoustic medium which assumes the 

air properties ( 1.2fρ = kg/m3 e 340 m/sc = ). A cylindrical pressure source was placed 
at (0.0m; 0.09m)−  and the responses were calculated at a line of receivers equally 
spaced 0.15 m apart, placed in the acoustic receiving medium 0.05 m  from the layer’s 
surface, as in Figure 2.  
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Air
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Figure 2 - Geometry of the simulations 

The plots shown in this paper refer to sound insertion loss which is obtained by 
finding the difference between the average pressure responses obtained without and 
with the presence of the panel. First the analysis is performed for a laterally confined 
glass panel with length 1.8 mL =  and thicknesses of 0.008 mh =  and 0.004 mh = . Then 
the influence of the length of the panel is assessed for a concrete layer 0.04 mh =  
thick with 1.8 mL =  and 5.0 mL = .  
Figure 3 presents the insertion loss for a single glass panel 0.008 mh =  thick without 
the lateral confinement (labelled in the plots grid #1). This Figure shows a second 
curve which was obtained for a grid of receivers equally spaced at 2.0 m intervals 
along the x  direction, defining a length of 30 m (labelled in the plots grid #2). A 
detailed analysis of this curve can be found in [6]. Analysis of this Figure shows that 
that the curve provided by grid #1, is almost smooth near the critical frequency 
(labelled ‘fc’ in the plots) which is generated by the propagation of bending waves. 
However, in the curve provided by grid #2, it is possible to clear identify a sharp dip 
at this frequency. In fact, in the absence of boundaries to limit the panel’s dimension 
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along the x  direction, the bending waves propagate along the layer, and to record 
their effect the receivers must be placed further away from the source. When the 
panel is confined these bending waves are reflected, and so the receivers placed near 
the source are able to record their presence. 
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Figure 3 - Insertion loss provided by a single panel 

0.008 mh =  thick of infinite extent 

 
Figure 4 plots the responses provided by a single glass panel 0.008 mh =  thick (Figure 
4a) and by the same panel 0.004 mh =  thick (Figure 4b).  
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Figure 4 - Insertion loss provided by a single glass panel of infinite extent vs laterally 

confined panel with 1.8 mL = : a) 0.008 mh =  thick; b) 0.004 mh =  thick 

 
Analysis of Figure 4a reveals that when the panel is confined laterally the resulting 
structural modes generate dips in the insertion loss curve at low frequencies. 
In this Figure five frequencies corresponding to the natural modes of a clamped-
clamped beam are added. These frequencies can be predicted according to the 
following expression [7] 

( )2

2

2 1
8n

nBf
m L

π −
= , (3)
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where B  is the bending stiffness; m is the mass per unit length and 2n ≥ . Notice that 
the dips predicted by the BEM model agree with this expression. However not all the 
dips obtained by expression (3) occur in the curve provided by the BEM model. This 
is due to the position of the load (located at a symmetry axis of the panel) that does 
not allow the modes with nodal lines at the centre of the panel to be excited.  
Analysis of Figures 4a and 4b, also shows that there is a dip in the curves provided by 
the BEM model in the vicinity of the critical frequency (labelled ‘fc’ in the plots). 
This dip was in fact present in the response provided by the single panel of infinite 
extent, but when the panel is laterally confined it becomes more pronounced. When 
the panel is assumed to be laterally confined, the bending waves reflected at the edges 
are combined with the incident waves producing standing wave patterns which may 
result in transverse panel motion. As a result, a decrease in the insertion loss curve in 
the vicinity of the critical frequency is found to occur. Note also, that the response 
provided by the BEM model displays a set of sharp dips at higher frequencies, which 
are also related to this effect. These tend to become more pronounced with increasing 
panel thickness, due to the size of the boundaries which allow more energy to be 
reflected. The responses provided by experimental results do not usually reveal the 
presence of this feature. This is likely to be because, at higher frequencies, bending 
waves may be transmitted to the outer medium and less energy is reflected, thus the 
stationary field tends to be attenuated.  
 
The insertion loss provided by a concrete panel 0.04 mh =  thick with a length of 

1.8 mL =  and 5.0 mL =  is plotted in Figure 5. 
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Figure 5 -Insertion loss provided by a single 

concrete panel 0.04 mh =  thick 

Again, the presence of dips related to the natural modes of the clamped panel and 
with the stationary field provided by the interaction between the incident and 
reflected bending waves, are found in the responses. When the length of the panel 
changes from 1.8 mL =  to 5.0 mL = , more dips are found and these tend to be less 
sharp as the frequency increases. Moreover an additional dip is being formed when 
the panel takes a length of 5.0 mL = , and this is related to the coincidence effect. 
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CONCLUSIONS 

In this paper a BEM model has been developed to predict sound insulation provided 
by laterally confined single partitions. Simulations were performed and the results 
were compared against those provided by a single panel of infinite extent. The results 
showed that at low frequencies the model was able to predict the structural modes for 
a laterally confined panel. Furthermore it was concluded that when the panel is thin 
the panel’s size plays an important role in the prediction of the critical frequency. It 
was also found that, at higher frequencies, this model predicts dips related to the 
stationary field provided by the interaction between the incident and the reflected 
bending waves. These tend to be more pronounced as the thickness of the panel 
increases, since the size of the boundaries allows more energy to be reflected. The 
results provided by real partitions do not indicate the presence of these dips. An 
explanation for this may be that part of the energy is transmitted to the elastic 
surrounding medium. This issue will be discussed in future work.  
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