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Abstract 
In the design of smart structures analytical models can contribute to the general 

understanding and analysis of the structural behaviour. In the paper techniques for the 

advanced analytical modelling of a cantilever beam are presented and experimentally 

verified. The beam is attached with piezoelectric patches that are used as actuators and 

sensors in a collocated and non-collocated manner. The structure is described first. Then the 

strain and stress distributions within the active and passive beam layers are derived. A novel 

methodology is introduced to model analytically the mechanical coupling between collocated 

actuator and sensor patches. The effective electromechanical properties of the patches and the 

effect of modal truncation is discussed. The analytical frequency response functions (FRF) 

are compared and verified with numerical and experimental data in the frequency range up to 

5 kHz including the first 10 bending modes and the first longitudinal mode. The observed 

differences between the simulated and measured eigenfrequencies are less than 0.5% except 

for the first bending and longitudinal mode. The average modelling error in the amplitudes is 

less than 1dB for collocated patch combinations in the frequency range up to 3 kHz. 

INTRODUCTION 

As the demand increases for thin and lightweight mechanical structures, structures are 

becoming more and more limited by their dynamic behaviour [8]. For high 

performance goals and large dynamic uncertainties passive solutions are often 

inadequate, especially in the lower frequency range, such that active vibration control 
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based on distributed parameter systems has to be used. 

The use of piezoelectric patches as elements of smart structures and the 

analytical modelling of system transfer functions were investigated in many studies 

[5], [4], [13] and [14]. Alvarez-Salazar and Iliff [2] inferred the mechanical coupling 

between collocated actuator-sensor patches from measured data and included it in the 

FRFs as an additional constant, called feedthrough. The effect of model reduction 

errors, termed residual mode, on the modelling of FRFs was discussed by Gao and 

Randall [9]. In general, the experimental validation of FRFs for analytical models that 

can be found in the literature is carried out only for the first few bending modes [1]. 

In this paper an approach is presented to model analytically the mechanical 

coupling between collocated actuator and sensor patches. Furthermore the effective 

electromechanical coupling and the modelling error due to model reduction is 

discussed. Finally a new advanced analytical beam model is proposed in modal form. 

The intention is not only to present a new model but to extend the validation of theory 

to higher modal orders and frequency ranges. 

ASSUMPTIONS 

A thin, rectangular and isotropic cantilever beam, as shown in Fig. 1, is considered. 

Four identical piezoelectric patches are supposed to be perfectly and symmetrically 

surface mounted in a collocated and non-collocated manner on both sides of the 

beam. The patches can be used as actuators or sensors. In the following the super- or 

subscript b  denotes the beam and the super- or subscript p  the patches. 

 

 

Fig. 1 - Geometry and layout of the cantilever beam with surface mounted patches. 

The beam is made of steel St05Z and the piezoelectric patches are made of 

Lead-Zirkonate-Titanate (PZT) ceramics Sonox P53. The principal characteristics of 

both materials are listed in Tab. 1. 

It is assumed that the mass and the stiffness of the piezoelectric patches can be 
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neglected in comparison with the mass and the bending stiffness of the beam [10]. 

Because of the length to the thickness ratio of the patches the edge effects of the 

patches can be ignored. In the analysis the bonding layer is supposed to be plane and 

thin such that it has not to be considered [5]. An Euler-Bernoulli model is used, 

neglecting the rotary inertia and shear deformation of the beam. 

 
Tab. 1 Characteristics of steel St05Z and Sonox P53 [3]. 

 steel St05Z Sonox P53 

hbl     ××  [10-3 m] 300 x 30 x 2 50 x 25 x 0.2 

pρ  [kg/m
3
] 7850 7830 

E  [109 N/m2]  198 67 

13ν , 23ν  0.33 0.34 

31d , 32d  [10
-12

 m/V] --- -233 

31e , 32e  [N/Vm]  --- -15.3 

rε  --- 1630 

ACTUATOR SENSOR COUPLING 

The stress and strain distributions within the beam are derived for a patch 

configuration as shown in Fig. 2. The approach is based on the work of Fuller et. al. 

[7] but includes the additional layer of the sensing patch. The super- or subscripts pa  

and ps  denote the actuating and sensing patch respectively. 

 

Fig. 2 - Asymmetric strain distribution. 

Applying voltage )(tV  across an unconstrained patch causes it to strain in both 

in-plane directions by ppa htVdt /)()( 31 ⋅=ε , where 31d  is the piezoelectric constant and 

ph  is the height of the patch. A bonded patch however is constrained by the stiffness 

of the beam. If the actuator patch is provided with an electric voltage, as shown in 

Fig. 2, the beam will both expand and bend which results in an asymmetric strain 

distribution in the xz  plane. 

The patches are transversally isotropic and the beam has nearly the same 

Young’s modulus bE  in both in-plane directions. Furthermore, the Poisson’s ratio ν  

of the patches and of the beam are almost the same. Based on the Euler-Bernoulli 

assumption the strain distribution ),( tzε  can be composed from a linear function and 

a constant term as 
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where )(tC  is the slope and )(ˆ tε  is the constant part. Using Hooke’s law the stress 

),( tzpaσ  within the actuating patch, the stress ),( tzbσ  within the beam substrate and 

the stress ),( tzpsσ  within the sensing patch are specified as 
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where pE  is the Young’s modulus of the patch. Employing the force equilibrium in x  

direction, the moment equilibrium about the centre of the beam and integration allows 

the derivation of )(tC  and )(ˆ tε , which are given by 

 

 

where bh  is the height of the beam. The mechanical coupling DK  between the patches 

caused by the strain ),( tzε  produces an electric displacement ),( txD  in the sensing 

patch. Integrating ),( txD  we obtain the charge )(tQ . Assuming that the patch is 

similar to an ideal parallel plate capacitor the voltage )(tVps  of the sensing patch can 

be expressed as 

 

where 0ε  is the permittivity of free space, rε  is the relative permittivity of the 

piezoelectric layer and 31e  is the piezoelectric charge density. 

EFFECTIVE COUPLING FACTOR 

The coupling coefficient of a PZT ceramic decreases with time due to a time 

depending reduction of the polarisation. A characteristic reduction of the coupling 

coefficient of low-voltage PZTs is in a magnitude of about 0.5% to 2% per unit time 
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limitations accelerates the aging process. In addition, both the thickness ph  and the 

dielectric properties 31d  and 31e  of the patch show manufacturing tolerances that are 

within %10±  of the nominal values [11]. The actual electromechanical properties are 

considered by an effective coupling factor effK , which gives 

 

3131
dKd eff

eff ⋅=    and   3131 eKe eff
eff ⋅=  (8) 

RESIDUAL MODE 

The beam is a system of infinite modal order. The FRF can be written as [9] 
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where iR  is the residue of the mode i , pis  is the corresponding complex pole in the s  

plane and *  means the complex conjugate. Neglecting the modes above the frequency 

range of interest results in a reduced order model )(ωinH . The out-of-band FRF 

)(ωoutH  is called residual mode )(ωRK . 

The anti-resonances of the reduced order model are the zeros of the FRF 

)(ωinH . In general they differ from the anti-resonances of the full order model )(ωH  

determined by the zeros of the sum )()( ωω outin HH + . 

In addition, the residual mode )(ωRK  contributes to the magnitude and phase of 

the FRF. The ratio of zeros and poles determines the frequency dependency of the 

contribution within the in-band range. At best the actuating and the sensing patch are 

arranged in a collocated manner resulting in a FRF with alternating zeros and poles. 

Thus the contribution of a truncated pole pis  is compensated for by the subsequent 

truncated zero zis  such that the residual mode )(ωRK  is nearly constant. 

ADVANCED BEAM MODEL 

The traditional beam model considers only the modal input and output gain of the 

patches. Based on the previous discussion we can derive an advanced beam model 

incorporating the mechanical coupling DK , the effective coupling factor effK  and the 

residual mode )(ωRK . The model can be expressed in modal form as [6] 
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is the eigenfrequency of the mode i  while ii ωξ ⋅  is the modal damping iδ . The modal 

input gain )( pai xN  and the modal output gain )( psi xV  are calculated as given in [6]. 

EXPERIMENTAL VERIFICATION 

A cantilever beam, as shown in Fig. 1, is used to validate the beam model. The 

experimental setup is given in Fig. 3. The actuating patch is driven by a white noise 

generated by the measurement hardware (HW) platform (Onosokki, DS-2000). The 

signal is amplified to 20Volt route mean square (Vrms) by an audio voltage amplifier 

(KME, SPA 3200MP) and a 50 Volt DC offset is added by a DC power supply 

(Gossen Konstanter, 14K60R). The voltage applied to the actuating patch is measured 

by a differential probe (Testec, SI-50) and is used as reference channel for the 

measurement HW platform. The generated piezoelectric voltages of the sensing 

patches are used as sensor signals. The FRFs are determined by averaging the 

response of 100 single measurements. 

 

 

Fig. 3 - Experimental setup. 

Eigenfrequencies 

The experimental eigenfrequencies if  of the beam are inferred from measured data. 

The analytical eigenfrequencies if  are computed by the results of the longitudinal 

and bending vibration analysis presented in [6]. 

Moreover a FE model of the beam is developed based on 3-dimensional finite 

elements including the patches with their fully coupled electromechanical fields. The 

finite element software COSAR (see www.femcos.de) was used to carry out the 

simulations as well as the calculation of the FRFs. 

The experimental, analytical and numerical (FE model) eigenfrequencies show 

errors less than 0.5% with respect to the measured ones. Exemptions are the first 

bending and longitudinal mode. The analytical model gives errors of -7.3% and -4.5% 

respectively whereas the FE model yields smaller errors of 3.53% and –5.24%. 

Feedthrough, effective coupling factor and residual mode 

The mechanical coupling DK  is calculated analytically to 0.033, see equation (7). The 
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effective coupling factor effK  and the residual mode RK  are inferred by minimizing 

the mean absolute amplitude modelling error of the analytical FRFs with respect to 

the measured FRFs in the frequency range from 15Hz to 3 kHz. 

The effective coupling factor effK  and the residual mode RK  depend on the 

patch combination used. The former varies between 0.81 and 0.86 due to the 

individual mechanical, electrical or thermal aging and manufacturing tolerances of 

the single patches. The later extends over the range from -0.0080 to 0.0009 as a result 

of the different modal input and output gains of the truncated modes associated with 

the single patch locations. 

A comparison of measured data with the FRF of a traditional beam model and 

the presented advanced one is given in Fig. 4. The feedthrough DK  and the residual 

mode RK  considerably improve the correspondence of the measured and analytical 

FRFs. The analytical anti-resonances are shifted left to lower frequencies such that 

they match the measured ones. The effective coupling factor effK  shifts the FRF 

horizontally. Thus the average amplitude modelling error of the analytical FRF is 

minimised from 10.4dB to 0.9dB in the range up to 3 kHz. 

 

Fig. 4 - Collocated FRFs of simple and advanced analytical beam model. 

The complete simulation results and experimental validation of the model is 

given in [6]. The paper presents in detail the influence of the mechanical coupling 

DK , of the effective coupling factor effK  and of the residual mode RK  on the FRFs. 

Furthermore non-collocated actuator and sensor patch combinations are investigated. 
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CONCLUSION 

An analytical formulation of the mechanical coupling of collocated actuator and 

sensor patches has been presented. The effective electromechanical coupling and the 

modelling error due to model reduction has been discussed. Moreover, a new 

advanced analytical beam model incorporating the mechanical coupling, the effective 

electromechanical coupling and the residual mode has been proposed. The presented 

analytical and measured FRFs show excellent agreement. The study demonstrates the 

possibility to extend the validation of the beam theory up to highest modal orders. 
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