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Abstract 
In this paper, an automatic system for the detection of moving trains is described. This system 
is based on an algorithm using vector quantization (VQ) and pattern matching techniques on 
the rail vibrations. The goal for this system is to remotely detect moving trains, in order to 
avoid labor accidents unfortunately common among railway workers. This system comprises 
both hardware and software subsystems. The hardware consists of a receiver having, as input, 
signals captured by an accelerometer in direct physical contact with the rail. The receiver 
circuit performs preliminary signal conditioning (amplification and filtering). The software 
subsystem comprises a pattern-matching process based on the evaluation of distortion 
measures against pre-stored VQ centroids. These represent in some way the spectra of two 
different classes of signals: “silence” (or, more appropriately, the absence of a moving train) 
and “moving train” (approaching or withdrawing). Prior to the detection, a training process 
(manual or automatic one) must be carried out, so the two VQ centroids can accurately 
represent the two classes of signals. For both cases, centroids result from a clustering 
algorithm using reflection coefficients derived from a 14th-order Linear Predictive Coding 
(LPC) analysis. Incoming signals were sampled at a rate of 16,000 samples per second and 
windowed into 300ms frames (window displacement is 100ms) and undergo a 14th-order LPC 
analysis. The recognition and the classification process are thus based on distortion measures 
to each one of the two centroids. Two distortion measures are used and their performance 
compared: the Euclidean vector distance [3] and the modified Itakura-Saito distortion [5]. In 
the former, each vector has its energy normalized to unity while, for the latter, energy also is 
used in the distance evaluation. For the system assessment, collected data was divided into 
training and classification corpora (respectively 67% and 33%) and classification results are 
presented and discussed. 
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INTRODUCTION 

Preliminary work on detection of moving trains has already been addressed in [1] and 
[2] using an active system based on the time delay of acoustic pulses reflected by the 
train boggies. The proposed technique was then considered to be insufficient for 
practical applications and, as such, a more efficient detection process was mandatory. 
The underlying principle of the detection method presented in this paper is spectral 
pattern-recognition based on the vector quantization (VQ) of the LPC coefficients of 
windowed data. Linear Predictive Coding (LPC) is a modeling technique that has 
been widely used in speech processing.  

Several experiments were undertaken to determine which window length should 
be used. Although in speech processing 30ms (and a 10ms displacement) is generally 
used, we have found that, for our purpose, a window length of 300ms (with 100ms 
displacement) was more appropriate for getting reliable detection. We have also 
found that several well-defined peaks (resonances) were quite evident in the vibration 
spectra, as depicted in Figure 1 and, in order to account for a good spectral modelling, 
the prediction order N, was chosen to be 14. A sampling rate of 16,000 samples per 
second was used and each sample was linearly quantized to 16 bits. 

 

 
 

Figure 1 – Rail vibration spectrum due to a moving train, 23 seconds after passing by the 
sensor 

 

Vector Quantization 

It is well known that the excitation source for the LPC model should be iid white 
noise. In our application, we assume that such a white noise excitation results from 
the small and random eccentrics that each wheel exhibits. The N prediction 
coefficients, a(k), are computed on a short-term basis over a time frame (window), in 
which the vibration may be considered approximately stationary.  

According to [4], let us assume that [ ]T
Nxxx L21=x  is an N-dimensional 

vector whose N components are real valued, continuous-amplitude random variables. 
What vector quantization does is to map x onto y, being y the quantized value of x. y 
is usually called the reconstruction vector or the output vector corresponding to x, and 
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y is assumed to take only one of a finite set of values contained in { }Lii ≤≤= 1,yY , 
where [ ]T

iNiii yyy L21=y . Y is known as the codebook, being L the size of the 
codebook and yi are referred to as the reference patterns or, centroids. So, L 
represents the number of divisions (cells) in which the N-dimensional space will be 
divided into, each of them modeled or represented by a centroid contained in Y. 
Codebook training can be done using appropriate algorithms, such as the K-means 
algorithm, also referred to as Lloyd algorithm. 

It is also important to stress out that if x is quantized as y, some dissimilarity 
(distortion) arises due to the quantization process. So, a distortion measure 

),( yxd can be defined to express the “distance” between them. The overall average 
distortion is 
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TRAINING AND CLASSIFICATION PROCESSES 

For training purposes, data was collected in two different situations. Naturally, we 
collected data from one rail directly excited by a moving train and, also, by trains 
moving in the neighbor tracks. In this case, the sensed rail was excited through the 
ballast. Both data were equally considered in our training process.  

Data contained in the training corpora were classified as belonging to one of the 
two already mentioned classes, (i.e. “silence” and “moving train”), thus starting with 
L = 2. These two classes were individually trained after both automatic and manual 
segmentations for the initial centroids. 

Distortion measures 

During both training and recognition / classification processes, distortion or distance 
measures are computed against each of the two centroids. In the training, these 
centroids are iterated until some decision rule is met, while in the recognition process, 
centroids are first derived from the training process. Two distortion measures were 
used: dE, the Euclidean [3] and dI-S, the modified Itakura-Saito (I-S) [5] distances, 
defined respectively as 
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where the u and v vectors refer to the autocorrelation of the LPC coefficients for the 
windowed data and for the centroid. The set of coefficients that describes the 
centroids is obtained by averaging all corresponding windows within each class. This 
class partition was, as mentioned, performed both manually and automatically. The 
underlying idea in the manual segmentation was to provide each centroid with 
suitable data. In fact, human decision was based on listening tests in order to decide 
which data would indicate a moving train or background noise. The automatic 
procedure did receive all available data and the algorithm was free to decide how to 
allocate data to both centroids. Initially, the resulting centroid from averaging all data 
was partitioned in order to have a new additional centroid. Data was now reclassified 
with these two centroids, and a new clustering within each class was performed using 
the Lloyd algorithm. This process was then iterated and just seven iterations were 
enough to generate the two final centroids.  However, it should be noted that this 
average was not taken directly from the LPC coefficients. Instead, the corresponding 
reflection coefficients were derived from the LPC polynomial to ensure that the 
models (centroids) through the training process would always be stable. Figure 2a) 
depicts the average distance, taken from equation (1), as a function of the number of 
iterations. Figure 2b) depicts the Bode amplitude diagram of the two resulting 
centroids (red and blue plots) and the manually clustered centroids (cyan and black 
plots). Blue and black plots correspond to the “silence” centroids while red and cyan 
are for the “moving train” centroids. 
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Figure 2 – a) Average distance to the centroids as a function of the number of iterations and 
b) Bode amplitude diagram of the centroids, both manual and automatic (see text). 

 
Classification is made upon a minimum-distortion or nearest neighbor selection 

rule, according to equation (4): 
 

Ljiijddq jii ≤≤≠≤= ,1,),,(),( iif,)( yxyxyx   (4) 
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This overall process (training and recognition) is summarized in Figure 3. 
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Figure 3 –Block diagram of the detection process. 
 

AUTOMATIC REMOTE TRAIN DETECTION 

Preliminary results 

Figures 4 and 5 depict, respectively, the distances of the test data to the two centroids, 
using both Euclidean (top plots) and modified I-S (bottom plots) distances, running 
on data not used in the training process (test data). In both figures, a) depicts 
classification of a moving train on the contiguous rail while, in b), moving on the 
same rail as the sensor’s. In Figures 4 and 5 there are also presented detection results. 
In these Figures, black dots represent the detection decision of a moving train 
(amplitude 10 for Euclidean distance; 1, for I-S distance) or no train (amplitude 0). 

For all graphics, the green dots indicate the distance to the “train” centroid and 
the blue dots indicate the distance to “silence” centroid. 
 

 
a) 

 
b) 

 
Figure 4 – Classification results for centroids resulting from manually segmented data. 
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a) 

 
b) 

Figure 5 – Classification results for centroids resulting from automatic clustering data. 
 
As it can be seen, the results present a considerable number of detection errors 

in the form of false alarms. These false alarms must be eliminated as much as 
possible, in order to increase the confidence in this system. These preliminary results 
also show that the Euclidean distance exhibits a more reliable indication of train 
movement while, for these examples, the I-S distance indicates train movement 
generally all the time, when this is not the case.  

Modification of the recognition approach 

To account for detection errors, we decided to include the short-time energy and its 
changes (delta-energy) in the decision algorithm, as shown in Table 1. Furthermore, 
the decision thresholds should encompass different scenarios. Those two thresholds 
(low and high) dealing with both the low-medium and the medium-high segments 
were heuristically established and were set to a value of 5% and 60% of their energy 
and relative distances values to the centroids, respectively. These changes have been 
highlighted in the classification process diagram in Figure 3. Also, to suppress 
isolated detection “peaks”, further improving the elimination of false detections of 
moving trains, a non-linear filter (majority voting) is used over a 5s window. 
 

Energy level Difference of the Distances to the Centroids  Decision 
High High Trust classification 
High Medium Consider TRAIN 
High Low Consider TRAIN 

Medium High Trust classification 
Medium Medium Trust classification 
Medium Low Consider TRAIN 

Low High Trust classification 
Low Medium Trust classification 
Low Low Consider NO TRAIN 

Table 1 – Combination of energy level and distance asymmetry to join to the classification 
information taken by the distortion measures. 
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EXPERIMENTAL RESULTS 

Detection of moving trains 

Figure 6 depicts detection results (black line) for both manually segmented data (left-
hand plots) and for automatic data clustering (right-hand plots). Only the Euclidean 
distance was used as by our preliminary results, and for a train moving (approaching, 
stopping and withdrawing) in the same tracks as the sensor’s. 
 

 
a) 

  
b) 

 
Figure 6 – Classification by the Euclidean distance and information on energy level and 
distance asymmetry, with centroids a) from manual segmentation and b) from automatic 

training. 

Train distance assessment 

A detection system should also provide prospective users with an estimation of the 
approaching train(s). This task was also carried manually through the registration of 
the time instants were a train could be perceived (approaching phase), or just to faint 
to be sensed (withdrawing phase). Previous work [2] has shown that 25dB/km is a 
typical value for energy attenuation as a function of distance. Therefore, distance 
could be easily assessed by combining this attenuation with the energy level of the 
vibrations, as shown in Table 2. It is quite interesting to note that human detection 
can be more subtle, detecting approaching trains much farther away. However, 
automatic detection of approaching trains does happen when they are significantly 
distant (more than 1km away). 
 

 Human detection distance [m] Automatic detection distance [m] 
Approach phase 1580 1240 

Withdrawal phase 1320 830 
 

Table 2 – Estimated train detection distance by human perception and by automatic system. 
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CONCLUSIONS 

In this paper, an automatic remote train detection system was described. This 
(passive) system is based in VQ techniques over data collected from accelerometers 
placed on the train tracks. An LPC feature extraction pre-processing stage allows 
300ms windowed signal to be tested against pre-stored centroids in order to check if 
they are “silence” or “moving train”. This preliminary detection is complemented 
with energy and (time) delta-energy to further improve detection. Both automatic and 
manual generated centroids were used in the evaluation of this system, yielding 
similar results.  

In these experiments, only suburban (electric) trains were considered and we 
intend to pursuit this work over other kind of trains, namely those with large diesel 
locomotives, since they do “excite” the tracks in quite a different way and, as such, 
extra centroids may be needed. 
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