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Abstract
Digital Waveguide Mesh (DWM) is a popular method for time domain modelling of sound
fields. DWM consists of a recursive digital filter structure where a D’Alembert solution of the
wave equation is propagated. One of the attractive characteristics of this method is related to
the simplicity of incorporating frequency dependent boundary conditions. Assuming that the
reflecting surfaces are linear and time-invariant, their impedances (and thus, their reflection
factors) can be simulated by means of digital filtering. So far such digital filters have been
designed to provide reflection factors corresponding to the impedance of the boundaries for
normal sound incidence. However, the resulting model of the boundary does not agree with the
behaviour of a locally reacting surface, and this can give rise to contradictions in the physical
interpretation of the reflected sound field. This paper analyses the behaviour of frequency
dependent boundary conditions in DWN in order to obtain a physical interpretation of the
simulated impedance surfaces. The interpretation is validated by several examples.

INTRODUCTION

Many problems in room acoustics can be solved by means of numerical time-domain methods.
Such methods provide fast and accurate solutions and their importance has grown with the
power of computers.

Among the different methods for acoustic simulations, the Digital Waveguide Mesh
(DWM) [1] should be mentioned because it offers some advantages compared with other time-
domain methods. These advantages are related with the capacity of applying digital signal
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processing theory directly to the method. This makes it possible to take account of, e. i., air
absorption and frequency dependent boundary conditions.

The ability of modelling frequency dependent reflections can be a key point for choos-
ing this method instead of others. With DWM one can model the reflections using digital fil-
ters [2] that represent frequency dependent reflection factors. However, the resulting boundary
filters and thus reflection factors are not dependent on the angle of incidence in the same way
as the corresponding locally reacting surfaces [3]. This paper analyses how well the DWM
model agrees with the locally reacting impedance model. The model analysed in this paper is
a 2D model; a 3D model follows the same analysis.

DIGITAL WAVEGUIDE MESH

Theory

The theory of DWM is based on decomposing the solution to the wave equation into trav-
elling (or diverging and converging) waves, as in the D’Alembert solution. In an ideal loss-
less medium, the wave equation can be implemented by means of pure delays, and the total
sound field is obtained by adding travelling wave components. In the simple 1D case, the
D’Alembert solution is written as

ψ(x, t) = ψ−(x− ct) + ψ+(x+ ct). (1)

This case can be seen as a decomposition of a direct wave,ψ+, and a reflected wave,ψ−,
in a medium with the speed of soundc. Each travelling wave can be simulated by a shift
register using pure or fractional delays. In this way, the digital waveguide model is obtained
by sampling both space and time. Spatial sampling points are known asscattering junctions.

In the multidimensional case each scattering junction, situated at positions, is linked
by means of bi-directional unit-delays toN neighbouring scattering junctions defined with
indexκ whereκ = 1, . . . , N .

In Fig. 1(a) a scheme of the DWM method is presented. The pressurep(s, n) is situated
at the centre of the figure, and it is surrounded byN neighbouring scattering junctions that
are represented byp(sκ, n) (κ = 1, . . . , N ). The particle velocityu(s, n) follows the same
notation and the scheme is equivalent. Figure 1(b) represents a DWM based on digital signal
processing theory, where scattering junctions are joined using digital delays.

Let the signalp+
κ (s, n) be an incoming signal from the neighbouring junction and

p−κ (s, n) represent an outgoing component. Note that delay linesp+
κ (s, n) andp−κ (s, n) join

p(s, n) andp(sκ, n) (see Fig. 1(a)). As the delay elements are bi-directional, the pressure is
defined as

pκ(s, n) = p+
κ (s, n) + p−κ (s, n). (2)

In a lossless scattering, the Kirchhoff laws must hold,

1. The sum of incoming particle velocities is equal to the sum of outgoing particle veloci-
ties at each junction
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Figure 1: a) Scattering junctions scheme in a Digital Waveguide Mesh. b) Implementation of
a DWM with digital signal processing theory

2. The pressures in all crossing waveguides are equal at the junction

According to these rules and assuming an homogeneous medium with a characteristic im-
pedance ofZκ(s) = ρc, ∀κ) the sound pressure at a scattering junction is obtained as

p(s, n) =
2
N

N∑
κ=1

p+
κ (s, n). (3)

¿From the second Kirchhoff law the reflected component can be obtained as

p−κ (s, n) = p(s, n)− p+
κ (s, n). (4)

In the next time step, the outgoing components are incoming in the opposite direction. This
can be expressed as

p+
κ (sκ, n+ 1) = p−κ (s, n), (5)

wherep+
κ (sκ, n) represents the incoming delay line with respect to the scattering junction

p(sκ, n) that links withp(s, n).
For the 2D case and for cartesian coordinates, the number of bi-directional delay lines

is 4, whereas in 3D simulations it is 6. More complex and efficient structures can also be
implemented [4].

It should be mentioned that the spatial (∆x,∆y) and temporal sampling (∆t) cannot
be left to chance; a relation between them must exist. In the DWM case, it follows the same
relation as with the finite difference time domain method [5]. This stability condition is known
as the Courant condition and it is defined as
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c∆t ≤ 1√(
1

∆x

)2 +
(

1
∆y

)2
. (6)

Frequency Dependent Boundary Conditions in a Digital Waveguide Mesh

One of the advantages of the DWM is the ease with which frequency dependent boundary
conditions can be included in the simulation. This is done by connecting a boundary filter
in each node representing the reflecting coefficient. This makes it possible to have different
impedance conditions at each point of the boundaries. Figure 2 represents a scheme of the
interaction of 2D DWM with the boundary filters.
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Figure 2: Interaction between DWM and boundary filters

However, a locally reacting surface with a specific impedance ofZ(ω) has a plane wave
reflecting factor that depends on the angle of incidence,

R(θ′, ω) =
Z(ω) cos θ′ − ρc

Z(ω) cos θ′ + ρc
. (7)

Since the angle of incidenceθ′ is generally unknown normal incidence is usually assumed [2].
In other words, with a given analytical impedance model (or with an impedance determined
experimentally), the reflecting factor filter is obtained by assuming thatθ′ is zero.

ANALYSIS OF BOUNDARY CONDITIONS IN DWM

In order to analyse the behaviour of the impedance model in DWN, an impedance boundary is
considered atx = 0. The other boundaries are assumed to be non-reflecting. Consider a dis-
crete broadband plane wavepi(s, n), with particle velocityuxi(s, n) = pi(s, n) cos(θ)/(ρc).

If the reflecting factor of the model is defined asr̂(θ, n) in the time domain, the reflected
pressure is a time convolution,pr(s, n) = pi(s, n) ∗ r̂(θ, n). Information about the reflecting
factor of the particle velocity is not directly available, but some of the results of the Finite
Difference method [5] can be useful in this analysis.
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A finite difference formulation of the Euler equation of motion is

ux(i, j, n) = ux(i, j, n− 1) +
1
ρ

∆t
∆x

(p(i+ 1, j, n)− p(i, j, n)) (8)

Centred atx = 0 and decomposingp(0, j, n) into reflected and reflected components, Eq. (8)
becomes

ux(0, j, n) = ux(0, j, n− 1) +
1
ρ

∆t
∆x

(p(1, j, n)− pi(0, j, n) ∗ (δ(n) + r̂(θ, n))). (9)

This expression can easily be separated into direct and reflected parts (in the absence of re-
flection, only the incident part exists). In this case, it is the reflected part that is interesting,

uxr(0, j, n) = −1
ρ

∆t
∆x

(pi(0, j, n) ∗ r̂(θ, n)). (10)

The fraction∆t/∆x can provide some information if certain algebraic modifications are car-
ried out. Assuming equality in the Courant formula (Eq. (6)), the fraction∆t/∆x is

∆t
∆x

=
1

∆x

c

√(
1

∆x

)2 +
(

1
∆y

)2
=

∆y

c
√

∆x2 + ∆y2
. (11)

The fraction∆y/
√

∆x2 + ∆y2 can be seen to be identical with the cosine of the angleα

that forms the diagonal direction with respect to the mesh coordinate system. Finally, the total
particle velocity component (incident plus reflected) inx-direction atx = 0 becomes

ux(0, j, n) =
pi(0, j, n)

ρc
cos θ − pi(0, j, n) ∗ r̂(θ, n)

ρc
cosα. (12)

In order to calculate the reflecting factor it is necessary to obtain the impedance at
x = 0 (the ratio of the pressure to the particle velocity) in the Z-transformed domain. Finally,
the reflecting factor for the DWM becomeŝR(θ, z) = Z{r̂(θ, n)} which equals

R̂(θ, z) =
Z(z) cos θ − ρc

Z(z) cosα+ ρc
, (13)

However, the impedanceZ(z) related with the reflecting factor filter is forced as a boundary
condition. Substituting Eq. (7) into Eq. (13) gives a relation between the expected reflecting
factor and the one that is obtained,

R̂(θ, z) =
R(θ′, z)( cos θ

cos θ′ + 1) + ( cos θ
cos θ′ − 1)

R(θ′, z)( cos α
cos θ′ − 1) + ( cos α

cos θ′ + 1)
(14)

Equation (14) shows that the best agreement is obtained when the angle of incidence
(θ), the angle selected in the filter design (θ′), and the diagonal angle in the mesh (α) are the
same. Note thatα is determined by the mesh; however, at least the impedance model can be
improved at some angles by forcingθ′ = α. To summarise, according to the WDM impedance
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model (Eq. (13)) the reflecting factor is dependent on the angle of sound incidence, but not in
the same manner as a real locally reacting impedance surface is.

RESULTS

To examine the behaviour of the DWM approximation to a locally reacting impedance, some
DWM implementations have been carried out. A 2D rectangular mesh with 200×200 (∆x =
∆y) cells is designed with a boundary filter atx = 0, and the other boundaries are absorbing
boundary conditions [6]. The sampling frequency is 40 KHz and the excitation is a Gaussian
pulse with a bandwidth of 5 kHz. The impedance is modelled as a hard-backed layer of porous
material, described by the Delany and Bazley expressions [7]. In the following simulations a
0.1 m layer of porous material with a flow resistivity of 1000 kg/m3/s. The coefficients of the
digital filter are defined according to Prony’s algorithm with an IIR digital filter of 40th order
using the analytical response of the impedance model. Figure 3 shows the reflecting factor of
a locally reacting impedance surface at different angles of incidence, calculated from Eq. (7)
and the impedance described above.
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Figure 3: Reflecting factor of a locally reacting impedance at different angles of plane wave
incidence.

As mentioned in the foregoing, the boundary filter can be designed with a degree a
freedom, the parameterθ′. In the literature this parameter has invariably been selected as 0;
in other words, the reflection factor that occurs for normal incidence has been used. However,
as shown above, a better approximation to a locally reacting surface is obtained by choosing
θ′ = α, which in this case meansα = π/4. Both designs are presented in Fig. 4.

Figure 4(a) shows different reflection factors obtained in a DWM whenθ′=0. The fig-
ure demonstrates that the resulting reflection factors disagree with the designed filter. The
largest differences occur when the sound incidence is in the normal direction. For other an-
gles of incidence a behaviour similar to that of the filter can be observed. In addition to these
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Figure 4: (a) Reflection factor withθ′=0; (b) reflection factor withθ′ = π/4.

differences some frequency shifts can be seen. These frequency shifts are due to the inher-
ent (artificial) dispersion of the DWM algorithm. The strongest dispersion occurs for normal
incidence.

Figure 4(b) represents the case whereθ′ = π/4. It can be seen that the differences
between the results and the design for most angles of incidence are moderate, and it is also
apparent that the frequency dispersion is reduced compared with the case whereθ′ = 0. It is
well known that the dispersion of the DWM method is minimised for the incidence angleα.

Both figures demonstrate that the general model for boundary conditions in the DWM
method do not correspond to a locally reacting surface, although there is a dependence of the
angle of incidence. The deviations from the behaviour of a locally reacting impedance surface
can be predicted from Eq. (14).

CONCLUSIONS

The behaviour of the boundary filter in the Digital Waveguide Mesh method has been
analysed. In DWM the boundary conditions are implemented with digital filters with transfer
functions corresponding to the desired reflecting factors. A locally reacting impedance surface
was assumed. However, contradictions appear when the boundary conditions are designed by
forcing the reflecting factor to some assumed angle of incidence.

The results show that although the DWM method gives an angle-dependent reflection
factor, the model does not correspond to a locally reacting surface in general. It is only in
specific cases that the results will agree with this model. Furthermore, it is necessary to include
one degree of freedom in the design of the boundary filter. This parameter can be used to
align the dependence of the angle of incidence to a specific angle. Some examples have been
presented that demonstrate not only the disagreement with the locally reacting model, but also
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how the parameterθ can influence in the behaviour of the boundary conditions.
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