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Abstract
In this paper we study the vibration behavior of a micro-gyro, which consists of aring

and its supporting structure. Thisring ismade from {11]} silicon wafer. The geometric

parameters of the system are designed so that the in-plane natural frequencies of the
ring is tuned to be equal to the out-of-plane ones; therefore the output signal can be
made of the same order as that of the input one. The relationships between the three
components of the angular velocity and the output vibrating magnitudes of thering are
derived analytically by using perturbation technique.

INTRODUCTION

Traditional vibrating gyroscopes such as Delco’ s hemispherical resonator gyroscope [1]
made of fused quartz is of sizein centimeter. It is of high accuracy, but very cost. And
it can only measure single-axis angular rate. Due to the rapid development of MEMS
technology many gyros of size in micrometer were designed. Typical examplesinclude
the vibrating nickel ring gyroscope [2] and the silicon ring one of British Aerospace[3].
The former use capacitors as actuators and sensors, while the latter uses
electromagnetic methods. There are also many other ring-type gyro patents [4,5]

appeared recently with some modification in structures and fabrications. Juneau [6]

showed that two-axis designs of ring-type gyros are possible.

Although there many papers and patents talking about ring micro-gyros, most of them
gave only the conceptual designs and lack rigorous analysis.
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Gallacher et al. [7] seems to be the first to study the design of three-axis gyros.
However, their deign didn’t include the mechanism of actuator, the effect of driving
forces on the output amplitudes is unknown. Also the coupling terms are completely
neglected in their work.

In this paper the three-axis gyros excited by electrostatic field of capacitors are
investigated. The equations of vibration are derived by Hamilton' principle. The
natural frequencies of the in-plane modes are tuned to those of the out-of-plane modes
by adjusting the geometric parameters following the derived formula. Then we solve
the complete equations of motion including the coupling terms by using perturbation
technique. The nonlinear relationship between the three angular rates and the vibration
amplitude of the ring are derived in closed form. The effect of the driving voltage and
the gap of the capacitor surfaces on the output signal can be obtained through our
analytical solution.

Frequency Analysis

Thetop view of thering gyro isshown in Fig. 1. The pairs of capacitors
(PD1, PD3), (PD2,PD4) areused as actuators. The diameter, width, and thickness are

denoted by a, h,andb respectively. Let u,v,w be the radia, tangential, and
out-of-plane displacement of the neutral line, U, U,, U, are the corresponding
displacements of any point on thering asshowninFig. 2. ¢ istherotation angle about
z-axis due to in-plane bending, @ is the rotation angle about Xx-axis due to
out-of-plane bending, and ¢ isthe twist angle about the y-axis due to torsion.

Fig. 1. Top view of thering

We adopt the Euler’ s beam theory , the displacements[8] are given by
U, =u(8,t) +z(6.t)
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U, =V(6,t) +rg —zg = v(6,t) +;[v(6,t) - auég’t)]_;a\%(?t) (1)
U,=w(6,t)-re¢(6,1),;

@ =(v-0du/dé)/a, @ = ow/add.
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Using Hamilton's principle we get the equations of motion as
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We assume the solution in the form
u= Ael@t*nd) , = geil@ttnd) \, — cail@trmd) @= Del(@tmd)

(4)
Substituting (4) into (3) gives
Wt = E(12a%(n?+1) +h?(2n? +1)(n? —1) —/(12a2 + h?)[h?(3n? —1)? +12a%(n? +1)?]) (53)
1n 2a’[12a? +h?(n? +1)] o
0t = E(12a2(n? +1) +h?(2n? +1)(n? -1) +,/(12a2 + h?)[?(3n? -1)? +12a2(n? +1)]) . (5b)
2n 2a?[12a? +h?(n? +1)] p

where «,, and w,, arethe natural frequencies of the in-plane nth vibration modes.
The differenceisthat «,, isthe frequency of inextensible mode, while «w,, isthat of
the extensible mode. Similarly, the frequencies of the out-of-plane mth modes are
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Wy = Wy (E,G,a,h,bm), @, = w,, (E,G,a,h,b,m). (6)
The amplituderatiosin (4) are
B_ j (12a? + h?n*)E —a?(12a? + h®n?) pat (7a)
A n(12a’E +h’n’E-a"’paf)
D _ —n?[(b* +h*)G +b*m’E] +a*(12a* + b*n?) pak (7b)
C am?[(b? +h?)G +b?E]
If we choose the lowest two modes and assume that b,h <« a, equation (7) reduces to
B. jl D . _ mP[(b? +h*)G +h’E] (8)
A 'n’ C  a(b?+h)m?G +h2E]’

The data of silicon wafer are E =165GPa, G = 67.6GPa, o = 2330kg/m?,
a=4000um, h=1004m, b=100um. In order to reconcile the in-plane and

out-of-plane frequencies, that is, a,, = @, for (n,m)=(2,3), wefind that the

geometric parameters are restricted to satisfy the equation
b=0.34h. 9)
and the radius has no effect on this reconciliation.

Analysis of Ring's gyroscopes

In this section we consider the effect of Corioslis force due to the angular velocity
input. We are going to use the Lagrange’ s equation to derive equations of vibration.
The eight supporting beam areincluded. Their strained energy is evaluated exactly, but
their kinetic energy is approximated by considering their velocity as one half of thering
at the contact point. The sensing coefficients are derived, which are the key parameters
that affect the performance of the gyros.

From equations (4) and (8) the displacements of the neutral line of the ring can be
expressed as

U= X, (t)Cos(nd) + X,(t)Sin(nd) , v = —%[Xl(t)S'n(né’) — X, (t)Cos(né)] ,
w = X, (t)Cos(md) + X, () Sin(md) , (10)

_ —m’[(b* +h*)G +b"m’E] +a*(12a* + b°m®) paf
¢ am?[(b? + h?)G +b’E]
where X, (t), X,(t), X,(t), and X,(t) are generalized coordinates.

[ X5(1)Cos(md) + X, (1) Sn(mé)]

Strain energy of the suspensions

The structure of the suspensions of theringis shownin Fig. 3.

The bending moments at different section of the suspension (shownin Fig. 4) are
M,=M +Qr, M,=M +QL —-Rs, M, =M +Q(L, +t)-RL,. (12)

Thetotal in-plane strain energy is

_ 1 bopg2 Loy 12 Layr2
U, _Ex(jo MZdr +] *MZds+| “MZdt)
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R Q
The use of Castigliano theorem
ouU, oU, ouU
o,t)=—"=, o,t)=—=, Ot)=—=, 13
gives the relationship between the forces and bending moments and the displacements
as
AN
R
™+ Q _ Q Q
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L, Lz
. Fig. 4. Forces and bending moment
Fig. 3 'I_'he geometry of the diagram of the suspension
suspension
N Ksill Ksi 12 Ksi 13 WS (0’ t)
My =Ky Ky Kgp ql)S(H,t) , (14)
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a5 (L + L +L) (L - L+ ) (LL + L (L, +3L))
K = Kga (E;G,a,h,b,L,, L, L;) . Substituting (14) into (12) yields the total in-plane
strain energy in terms of generalized coordinates as
V; =k (X7 (1) + X3 (1), (154)
(Kot Kos) | Ko (150)
a a

Similarly, the total out-of-plane strain energy of the eight suspensionsin terms of
generalized coordinatesis

Vg =k, (X7 (1) + X3 (1) - (16)
Let x = (X, (1), X,(t), X5(t), X,(t))" and we apply the Lagrange' s equations to derive
equations of vibration

where k, =4Kg, +Kg, +
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0 -AQ, AQ, -4Q,] [éw, 0 0 O
ool A% 0 AQ AQ, | |0 &m0 O
-AQ, -AQ, 0 -9, 0 0 é&w O
AQ, -AQ, AQ, O 0 0 0 éw (17
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0 0 &« 0
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where A,---, 1, aretheimportant parameters of the gyros and are called sensing
coefficients. The larger the A's are, the more sensitive the gyro will be and the better
the resolution is. With the non-dimensional quantities y=h/a, n=b/a, k =¥/a’
where ¥ isthe volume of asingle suspension, the explicit formof A, and 4, is
48(2myn + 2kK) 1 _g[1+ 6r1y’n(7TEN® +3G(y* +1%)) j (18)
(En* +9G(y* +n*))(rym(20+3y*) + 20k)

L 60mm+9my’n+60k T ° 5

Electrostatic Actuators

The electrodes of the driving capacitor are modeled as parallel plates for
approximately calculating the electrostatic force

dF =% ga, (19)

where ¢, isthe dielectric constant, V. applied voltage, A the gap of the parallel plates,
Athe area of the electrode plate. In terms of the radial displacement of the ring we can
write A=A, -U,, where A, istheinitia gap inin-plane direction. Assuming U, < A,
and expanding the term 1/A? up to first order we have
ENZ . 2,
dF, ‘2on A )dA. (20)

where A, isthe kth electrode’ s potential. Using the Lagrange’ s equations we get the
eguations of vibration with electrostatic field as

0 -AQ, A9, -AQ, fw, O 0 0
AQ, 0 A0, A9, gol 0 S 0 0
-AQ, -AQ, 0 -4Q, 0 0 &w, O

1+

AQ, -AQ, 49, 0 0 0 0 & -
@ 0 0 0] [a 0 0 0] [q
L0 & 0 0| |0a 00 |0

0 0 « O 0 0 a O 0

0 0 0 «| |0 0 0 a |0

Consider the driving voltages to be
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Vg (1) =V5(t) =VoSn(t) , Ve, (t) =V, (t) =VpCos(vt) . (22)
Then one of the coefficients a,, says a, hasthe explicit form as
12a’n’eVg[4a +Sn(4a)]

=— 2
! e[ (n® =1)? +12a*(n” +1)] )
and theforcing element q, is
12a’n?e,V3Sin(2a)Cos(2vt) (23b)

~ Tha?A2(n? —1)? +12a2(? +D)]
Since the damping ratio & are small, also theratio of the angular rate to the natural

frequency is small, thus we can use the perturbation technique to obtain first-order
approximate analytical solutions. Now we introduce

— . _ Q — Q -
T=at, §=¢6§, A =¢ Q =0, V=g, =0,
g T af q " g
E—é‘ a,[6a +Sn(6a)Cos(2vt)], é £ 34[—6a+ Sn(6a)Cos(2vt)],
=% %=, x(t)=X(T (24)
Y (t) = X(T)
Thus equatlon (21) can be parameterlzed in ¢ as
& AQ A0, A0 . o
K+ AlQ_z 51_ /]2_Qx /]ZQ_V x4+ O 1&g
-0, A0, & -AQ, o 0
A0, A0, A9, § o 0 (25)
0 0 q
0 0 X = £3 0
o + £a,[6a + Sin(6a)Cos(2uvt)] 0 ““lo
0 «f + £€a,[-6a + Sn(6a)Cos(2vt)] 0
Assume the solution isin the form
QM| QM) -
s = 24 %M, o2 (26)

Quu(T)| | Qau(T)
Qu(M)|  |Qup(T)
The zero-order solution can be easily obtained as
Qu(T) =AT Qu(T)=A,e" _ (27)
Q31(T) = A%lejer QZl(T) = A21ejT
Substituting this into the second order governing equations and by eliminating the
secular terms we can find solution for A, A, A,;,and A, . Then the first order

solutions X, (t) are obtained. We define the ratios of the output signal to the input one
X,(1) 8y, = X,)/X,(1), Vo= Xs(t)/ X, (1), Ve =X 0/ X,() - (28)
The equations which relate the angular rates Q, to the displacements of thering are
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obtained explicitly in the form

Q
Q=30 Q=AM+ E)AA =05+ 1A
xD

Qi =[5 VA + Vil (V5 + V) Ay = AN + Vo Yiho(ady + Ay lw
= A2 0+ 10) '
Equation (29) shows that the relation between Q; and J; are nonlinear. The coupling
effect isshown in Fig. 7, which revealsthat Q, affectsthe linear relation between y,
and Q, by shifting the curveto the | eft.

(29)

Q, increases

Qy (rad. /sec.)

.01 -0.05 0.05 01

Fig. 7. Thelinear relation between Q, and ), , and the Coupling effect.

Conclusions

In this paper the performance of the three-axis ring gyro is analyzed successfully. We
have found the equation in which the in-plane frequency can be tuned o that of the
out-of-planes one. Also we drive the exact closed-form solution for the relationship
between the angular rates and the amplitudes of ring’ s vibration, in which the coupling
effect isincluded.

References

=

E. Loper and D. D. Lych, “The HRG: A new low noiseinertial rate sensor,”. Proceedings of the 16™
JT Services Data Exchange for Inertial Systems, Los Angles, 16-18 (1982).

W. Putty, Microstructure for vibratory gyroscope, United State patent No. 5450751(1995).

I. D. Hopkin, ‘ The performance and design of a silicon micromachined gyro,” Symposium Gyro
Technology, Stuggart, Germany (1997).

M. E. McNie, Micro-machining of ring angular rate gyro,” Patent No. US6276205 (2001).

C. P. Fdl, “Angular rate sensor,” Patent No. US 6282958 (2001).

Juneau, et al., “Dual axis operation of a micromachined rate gyroscope,” technical Digest of the 9"
International Conference on solid State Sensor & Actuator, 883-886 (1997).

B. J. Gallacher, et a., “Principals of athree-axis vibrating gyroscope,” |EEE Transactions on
Aerospace and Electronic Systems, Vol. 37, No. 4, 1333-1343 (2001).

W. Kim and J. Chung, “Free non-linear vibration of arotating thin ring with the in-plane and
out-of-plane motions,” Journal of Sound and Vibrations, 258(1), 167-178 (2002).

S. Y. Leeand J. C. Chao, “Out-of-plane vibrations of curved non-uniform beams of constant
radius,” Journal of Sound and Vibrations, 238(3), 443-458 (2000).

© © N ouk WwWN



	INTRODUCTION
	�
	References


