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Abstract 
In this paper we study the vibration behavior of a micro-gyro, which consists of a ring 
and its supporting structure. This ring is made from { }111  silicon wafer. The geometric 
parameters of the system are designed so that the in-plane natural frequencies of the 
ring is tuned to be equal to the out-of-plane ones; therefore the output signal can be 
made of the same order as that of the input one. The relationships between the three 
components of the angular velocity and the output vibrating magnitudes of the ring are 
derived analytically by using perturbation technique.   
 

INTRODUCTION 

Traditional vibrating gyroscopes such as Delco’s hemispherical resonator gyroscope [1] 
made of fused quartz is of size in centimeter. It is of high accuracy, but very cost. And 
it can only measure single-axis angular rate. Due to the rapid development of MEMS 
technology many gyros of size in micrometer were designed. Typical examples include 
the vibrating nickel ring gyroscope [2] and the silicon ring one of British Aerospace [3]. 
The former use capacitors as actuators and sensors, while the latter uses 
electromagnetic methods. There are also many other ring-type gyro patents [4,5] 
appeared recently with some modification in structures and fabrications. Juneau [6] 
showed that two-axis designs of ring-type gyros are possible.  
 Although there many papers and patents talking about ring micro-gyros, most of them 
gave only the conceptual designs and lack rigorous analysis.  
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Gallacher et al. [7] seems to be the first to study the design of three-axis gyros. 
However, their deign didn’t include the mechanism of actuator, the effect of driving 
forces on the output amplitudes is unknown. Also the coupling terms are completely 
neglected in their work. 
  In this paper the three-axis gyros excited by electrostatic field of capacitors are 
investigated. The equations of vibration are derived by Hamilton’ principle. The 
natural frequencies of the in-plane modes are tuned to those of the out-of-plane modes 
by adjusting the geometric parameters following the derived formula. Then we solve 
the complete equations of motion including the coupling terms by using perturbation 
technique. The nonlinear relationship between the three angular rates and the vibration 
amplitude of the ring are derived in closed form. The effect of the driving voltage and 
the gap of the capacitor surfaces on the output signal can be obtained through our 
analytical solution.   
 
Frequency Analysis 
 

The top view of the ring gyro is shown in Fig. 1. The pairs of capacitors 
( )PD1, PD3 , ( PD2,PD4

,  h, and 
)
b

z

 are used as actuators. The diameter, width, and thickness are 
denoted by a  respectively. Let  be the radial, tangential, and 
out-of-plane displacement of the neutral line, U U  are the corresponding 
displacements of any point on the ring as shown in Fig. 2. 

, ,u v w
,  ,  r Uθ

iφ  is the rotation angle about 
z-axis due to in-plane bending, 0φ  is the rotation angle about x-axis due to 
out-of-plane bending, and φ  is the twist angle about the y-axis due to torsion.  

    

Driving 
electrode

We adopt the Euler’s beam theory , the displacements [8] are given by  

Ring

Fig. 1. Top view of the ring 
gyro

Sensors

         U u( , ) ( , )r t z tθ φ θ= +  
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 ( , ) ( , )( , ) ( , ) ( , )oi
r u t z wU v t r z v t v ta aθ

θθ φ φ θ θ θ θ
 
 
 

∂ ∂= + − = + − −∂ ∂
tθ       (1) 

 ( , ) ( , )zU w t r tθ φ θ= − ;    
 ( )i v uφ θ= −∂ ∂ a ,    0 w aφ θ= ∂ ∂ . 
The strain-displacement relationships [9] are  
  2

' '( ' '') ( )v u x z wv u
a aa

'
aθθε φ+= + − − − , 

  '( 'r )z w
a aθγ φ= + ,   '( 'z )x w

a aθγ φ= − + .        (2)  

      

u

v

w

φ

iφ

oφ rU

Uθ

zU

z

x

y  
 Fig. 2. Then displacements of a ring’s cross-section.
 
Using Hamilton’s principle we get the equations of motion as 

2 2

2 2 4( ') ( ' '') ( '''' ''') 0
12 12

E h h Eu u v v u u v
a a aρ ρ

+ + + − + − = , 

2 2

2 2 2 2 2 4 2 2
12 ' ' '' ''' 0

12 12 12
E h E h Ev u u v

a h a h a a a hρ ρ ρ ρ ρ
− − − +

+ + +
u = , 

2 2 2 2 2

4 3 2 4
( )'' '' '' '''' 0

12 12 12 12
G b G h G b E b b Ew w w w
a a a a

φ
ρ ρ ρ

+ +− − − + =      (3) 

2 2 2 2

2 2 2 3 2 2 2
( ) '' '' 0

( ) ( )
b E b G h G b E Gw

a b h a b h a
φ φ

ρ ρ
+ ++ − −

+ +
φ

ρ
= . 

We assume the solution in the form  
1( )j t nu Ae ω θ+= , , , .             (4)  1( )j t nv Be ω θ+= 2( )j t mw Ce ω θ+= 2( )j t mDe ω θφ +=

Substituting (4) into (3) gives  
2 2 2 2 2 2 2 2 2 2 2 2 2

2
11 2 2 2 2

(12 ( 1) (2 1)( 1) (12 )[ (3 1) 12 ( 1) ])
2 [12 ( 1)]n

E a n h n n a h h n a n
a a h n

ω
ρ

+ + + − − + − + +=
+ +

   (5a) 

 2 2 2 2 2 2 2 2 2 2 2 2 2
2
12 2 2 2 2

(12 ( 1) (2 1)( 1) (12 )[ (3 1) 12 ( 1) ])
2 [12 ( 1)]n

E a n h n n a h h n a n
a a h n

ω
ρ

+ + + − + + − + +=
+ +

.   (5b)  

where  and  are the natural frequencies of the in-plane nth vibration modes. 
The difference is that  is the frequency of inextensible mode, while  is that of 
the extensible mode. Similarly, the frequencies of the out-of-plane mth modes are  

11nω 12nω

11nω 12nω
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  ( )21 21 , , , , ,m m E G a h b m=ω ω ,  (22 21 , , , , ,m m )E G a h b mω ω= .      (6)  
The amplitude ratios in (4) are  

  
2 2 4 2 2 2 2

1
2 2 2 2 2 2

1

(12 ) (12 )
(12 )

a h n E a a h nB j
A n a E h n E a h

2ρω
ρω

+ − +=
+ −

,             (7a)  

  
2 2 2 2 2 2 2 2 2 2

2
2 2 2 2

[( ) ] (12 )
[( ) ]

m b h G b m E a a b mD
C am b h G b E

ρω− + + + +=
+ +

.    (7b)  

If we choose the lowest two modes and assume that b h , equation (7) reduces to  , a

  1B jA n ,   ≈
2 2 2 2

2 2 2 2
[( ) ]

[( ) ]
D m b h G h E
C a b h m G h E

+ +≈ −
+ +

.     (8)  

The data of silicon wafer are , , , 165GPaE = 67.6GPaG = 32330kg/mρ =
4000 ma µ= , 100 mh µ= , 100 mb µ= . In order to reconcile the in-plane and 

out-of-plane frequencies, that is,  for  , we find that the 
geometric parameters are restricted to satisfy the equation  

12 22n mω ω= ( ),n m = ( )2,3

    .         (9) 0.34b = h
and the radius has no effect on this reconciliation.  
 
Analysis of Ring’s gyroscopes 

 
 In this section we consider the effect of Corioslis force due to the angular velocity 
input. We are going to use the Lagrange’s equation to derive equations of vibration. 
The eight supporting beam are included. Their strained energy is evaluated exactly, but 
their kinetic energy is approximated by considering their velocity as one half of the ring 
at the contact point. The sensing coefficients are derived, which are the key parameters 
that affect the performance of the gyros.  
 From equations (4) and (8) the displacements of the neutral line of the ring can be 
expressed as  

1 2( ) ( ) ( ) ( )u X t Cos n X t Sin nθ θ= + , 1 2
1 [ ( ) ( ) ( ) ( )v X t Sin n X t Cos n
n

θ θ= − − ]

θ

,  

3 4( ) ( ) ( ) ( )w X t Cos m X t Sin mθ= + ,         (10)
  

2 2 2 2 2 2 2 2 2 2
2

3 42 2 2 2

[( ) ] (12 ) [ ( ) ( ) ( ) ( )
[( ) ]

m b h G b m E a a b m X t Cos m X t Sin m
am b h G b E

ρω ]φ θ θ− + + + += +
+ +

 

where 1( )X t , 2 ( )X t , 3( )X t , and 4 ( )X t  are generalized coordinates.  
  
 Strain energy of the suspensions 
The structure of the suspensions of the ring is shown in Fig. 3.  
The bending moments at different section of the suspension (shown in Fig. 4) are  

1M M Qr= + , 2 1M M QL Rs= + − , 3 1( ) 2M M Q L t RL= + + − .            (11)  
The total in-plane strain energy is  

1 2 32 2
1 20 0 0

1 ( )
2

L L L

si
x

U M dr M ds M dt
EI

= + +∫ ∫ ∫ 2
3  
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( ) ( )

( ) ( )( )

3 3
1 12 2 3 2

1 1 1

33
1 3 21 2

3 3
1

6 x

M L Q M L Q L R
L M L MQ L Q

R Q
EI M L L Q L RM L Q L R

R Q

 + + −
+ + + − 

 =  + + −+ − − +  

2

.          (12) 

The use of Castigliano theorem  

  ( ), si
s

Uu t
R

θ ∂=
∂

,  ( ), si
s

Uv t
Q

θ ∂=
∂

, ( ), si
is

Ut
M

φ θ ∂=
∂

,           (13)  

gives the relationship between the forces and bending moments and the displacements 
as  
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Fig. 4. Forces and bending moment 
diagram of the suspension 
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Fig. 3. The geometry of the
suspension 
 
( )
( )
( )

11 12 13

12 22 23

13 23 33

,
,
,

si si si s

d si si si s

g si si si os

N K K K w t
M K K K t
M K K K t

θ
φ θ
φ θ

    
   =          





,     (14)  

ere  
( )( )

( )( ) ( )( )
3 2 2 2

1 3 2 3 1 2 3
12 2 2 2

2 1 2 3 1 1 3 3 2 3 1 2 3

3 2 2

4 3si

bd E L L L L L L L
K

L L L L L L L L L L L L L

+ + +
=

+ + − + + +

( )si 1 2 3, , , , , , ,kl

, in general, 

kl K E G a h b L L L= . Substituting (14) into (12) yields the total in-plane 
in energy in terms of generalized coordinates as  

 V k ,               (15a) 2 2
1 2( ( ) ( )si ni X t X t= + )

ere  ( )23 32 33
11 22 2

3 94 si si si
ni si si

K K Kk K K
a a
+

= + + + .           (15b) 

ilarly, the total out-of-plane strain energy of the eight suspensions in terms of 
eralized coordinates is  

 V k .                (16)  2 2
1 2( ( ) ( )si ni X t X t= + )

)t ( 1 2 3 4( ), ( ), ( ), ( )X t X t X t X t= Tx  and we apply the Lagrange’s equations to derive 
ations of vibration  
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1 2 2 1 1

1 2 2 1 1

3 3 4 2 2

3 3 4 2 2

2
1

2
1

2
2

2
2

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 0
0 0 0

0
0 0 0
0 0 0

z y x

z x y

y x z

x y z

0
x x x

x

λ λ λ ξ ω
λ λ λ ξ ω
λ λ λ ξ ω
λ λ λ ξ ω

ω
ω

ω
ω

− Ω Ω − Ω   
   Ω Ω Ω   + +
− Ω − Ω − Ω   
   Ω − Ω Ω    

 
 
 + =
 
 
  

  (17)  

where  are the important parameters of the gyros and are called sensing 
coefficients. The larger the  are, the more sensitive the gyro will be and the better 
the resolution is. With the non-dimensional quantities 

1, ,λ 4λ
'sλ

h aγ = , b aη = , 3V aκ =  
where V  is the volume of a single suspension, the explicit form of   and  is  1λ 2λ

1 3

48(2 2 )
60 9 60

πγη κλ
πγη πγ η κ

+=
+ +

,  
3 2 2 2

2 2 2 2 2

2 6 (7 3 ( ))1
5 ( 9 ( ))( (20 3 ) 20 )

E G
E G

πγ η η γ ηλ
η γ η πγη γ κ

 + += + + + + + 
            (18)  

 
Electrostatic Actuators 
 
 The electrodes of the driving capacitor are modeled as parallel plates for 
approximately calculating the electrostatic force  

   
2

0
22
eVdF dA=

∆
ε ,                 (19) 

where  is the dielectric constant, V  applied voltage,  the gap of the parallel plates, 
the area of the electrode plate. In terms of the radial displacement of the ring we can 

write , where  is the initial gap in in-plane direction. Assuming U  
and expanding the term 

0ε

∆ =

e ∆
A

i U∆ − r i∆ r i∆
21  up to first order we have  ∆

   
2

0
2

2(1 )
2

ek r
i

ii

V UdF dAε= +
∆∆

.        (20)  

where  is the kth electrode’s potential. Using the Lagrange’s equations we get the 
equations of vibration with electrostatic field as  

ek∆

 

1 2 2 1 1

1 2 2 1 1

3 3 4 2 2

3 3 4 2 2

2
11

2
21

2
32

2
42

0 0 0 0
0 0 0

0 0 0 0
0 0 0 0

0 0 00 0 0
0 0 00 0 0
0 0 00 0 0
0 0 00 0 0

z y x

z x y

y x z

x y z

0
x x x

a
a

x x
a

a

λ λ λ ξ ω
λ λ λ ξ ω
λ λ λ ξ ω
λ λ λ ξ ω

ω
ω

ω
ω

   
   
   
   
   

     
   
   
   
   
   

     

− Ω Ω − Ω
Ω Ω Ω

+ +− Ω − Ω − Ω
Ω − Ω Ω

+ + =

1

0
0
0

q 
 
 
 
 
  

  (21)  

Consider the driving voltages to be  
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1 3( ) ( ) ( )Pe eV t V t V Sin tν= = , V t2 4( ) ( ) ( )Pe eV t V Cos tν= = .          (22)  
Then one of the coefficients a , says  has the explicit form as  i 1a

 . 
2 2 2

0
1 3 2 2 2 2 2

12 [4 (4 )]
[ ( 1) 12 ( 1)]

p

i

a n V Sin
a

h h n a n
ε α α

πρ
+

= −
∆ − + +

            (23a)  

and the forcing element  is  1q

  
2 2 2

0
1 2 2 2 2 2 2

12 (2 ) (2 t)
[ ( 1) 12 ( 1)]

P

i

a n V Sin Cosq
h h n a n

ε α ν
ρ π

= −
∆ − + +

 .           (23b)  

Since the damping ratio iξ  are small, also the ratio of the angular rate to the natural 
frequency is small, thus we can use the perturbation technique to obtain first-order 
approximate analytical solutions. Now we introduce  

1T tω= , 1 1ξ εξ= , 1 2
1 22 2

1 1
,a aa aε ε

ω ω
= =

1 1 1
, ,yx z

x yε ε εω ω ω
ΩΩ Ω= Ω = Ω = Ω ,z  

23
32

1
[6 (6 ) (2 )],a a Sin Cos tε α α ν

ω
= +   24

42
1

[ 6 (6 ) (2 )],a a Sin Cosε α α ν
ω

= − + t  

1
2
1

32
1

1
, , ( ) (r

q q x t X T
ω

ωω εω= = = )                (24)  

Thus equation (21) can be parameterized in  as  ε

1

2

2 2
3

2 2
4

1 1 2 2

1 1 2 2

3 3 2 4

3 3 4 2

1

3

1 0
0 1
0 0
0 0

0 0
0 0

[6 (6 ) (2 )] 0
0 [ 6 (6 ) (2 )]

0
0
0

r

r

z y x

z x y

y x z

x y z

a
a

a Sin Cos t
a Sin Cos t

q

ε
ε

ω ε α α ν
ω ε α α ν

ξ λ λ λ
λ ξ λ λ

ε
λ λ ξ λ
λ λ λ ξ

ε

 
+ 

  + 
 
 
 

 
 
 
 
 + +
 + − +    

− Ω Ω − Ω
Ω Ω Ω

+ +
− Ω − Ω − Ω

Ω − Ω Ω

=X

X X

   (25) 

Assume the solution is in the form  

  .                     (26)  
11 12

21 22 2

31 32

41 42

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

Q T Q T
Q T Q T

X T O
Q T Q T
Q T Q T

ε ε

   
   
   
   
   
   
   
      

= + +

The zero-order solution can be easily obtained as  

 .               (27)  11 11 21 21

31 31 21 21

( ) ( )
( ) ( )r

jT jT

j T jT

Q T A e Q T A e
Q T A e Q T A eω

= =
= =

Substituting this into the second order governing equations and by eliminating the 
secular terms we can find solution for . Then the first order 
solutions  are obtained. We define the ratios of the output signal to the input one 

 as     

11 21 31 41, , ,and A A A A
( )iX t

1( )X t 2 1( ) ( )2 X t X tγ = ,   3 1( ) ( )X t3 X tγ = ,  4 14 ( ) ( )X t X tγ = .   (28) 
The equations which relate the angular rates Ω to the displacements of the ring are i
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obtained explicitly in the form 
xN

x
xD

ΩΩ =
Ω

,  2 2 2
3 2 1 3 3 4 2[(1 ) ( ) ]xD λ 4γ λ λ γ γ λ λΩ = + − +  

2 2 2

             

2 4 3 4 1 4 2 3 4 2 4 1 3 2 3 3 4 1 1 2

2
2 4 3 2 4

[ (( ) ) (

( )

xN

aj

γ γ λ λ ξ γ ξ γ γ λ λ λ λ γ γ λ λ ξ λ ξ ω

γ λ γ γ γω

Ω = + + − + +

− +
.        (29)  

)]

Equation (29) shows that the relation between Ω  and i jγ  are nonlinear. The coupling 
effect is shown in Fig. 7, which reveals that yΩ  affects the linear relation between 4γ  
and by shifting the curve to the left.  xΩ

  
-0.1 -0.05 0.05 0.1

ΩxHrad.êsec.L0.00001

0.00002

0.00003

0.00004

0.00005

γ4

0zΩ =

1 ./ sec.z radΩ =2 ./ sec.z radΩ =

increaseszΩ

xΩ 4γ  Fig. 7. The linear relation between  and  , and the Coupling effect.   
Conclusions 
In this paper the performance of the three-axis ring gyro is analyzed successfully. We 
have found the equation in which the in-plane frequency can be tuned o that of the 
out-of-planes one. Also we drive the exact closed-form solution for the relationship 
between the angular rates and the amplitudes of ring’s vibration, in which the coupling 
effect is included.  
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