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Abstract 
In this paper a complete equivalent electric circuit for a planar shear piezoelectric 
accelerometer is presented. Starting from the KLM (Krimholtz-Leedom-Matthaei) approach 
for a single piezoceramic plate sandwiched between two cladding layers, the model is 
extended in order to facilitate the frequency domain analysis for arbitrary geometries of the 
seismic masses. An original and complete PSpice circuit source is given for illustrating the 
spectra calculations. 

INTRODUCTION 

Most of the commercially available accelerometers have as sensing devices 
piezoelectric ceramics. Such transducers are more and more attractive due to their 
size, mass, electrical properties and price. They present different constructive 
geometries, depending on the positioning of the piezoceramic element relative to the 
seismic masses of the system and to the base. The thickness-mode shear type effect is 
considered in this work, for rectangular plates as illustrated in figure 1b. An exact 
equivalent circuit that separates the piezoelectric material into an electrical port and 
two acoustic ports, through the use of an ideal electromechanical transformer, is 
presented in figure 1a. The difficulties in deriving the analytical solutions for the 
wave equations are overcome by the use of electrical network and transmission-line 
theory. This model, commonly referred to as the KLM model [1],[6], can be used for 
analyzing free and mass loaded resonators, transient responses, for material 
coefficient determination, for frequency design of multilayer and array transducers.  

Because of the immediate possibility of behavioral simulation, numerical plots 
for various analyses can be obtained with dedicated electrical engineering programs 
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such as SPICE (Simulation Program with Integrated Circuit Emphasis) [13],[14]. This 
paper presents an electrical-equivalent implementation for frequency analysis of such 
transducers. The mechanical components from the left and right sides of the 
piezoceramic plate have an electrical correspondent in the acoustical loads ZL and ZR, 
respectively. The KLM model uses the transmission line model which describes both 
the piezoelectric transformation between electrical and mechanical vibration, and the 
propagation of acoustic waves in analogy to the electrical waves. The transmission 
line has two ports where acoustical loads are applied, for an accelerometer these 
being the seismic mass at one side and the center base at the other side. This 
acoustical side represented by the transmission line is coupled to the electrical side by 
a transformer with the ratio 1:Φ. Thus, the influence of acoustical load variations on 
the transducer’s electrical impedance can be modeled. 

 

 
 

Figure 1 - The KLM model for a single piezoceramic plate 
 
The electrical components and the acoustical loads from figure 1a are given by 

the following expressions [6],[8],[9]: 
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where C is the capacity, ε is the permittivity, A is the lateral area of the plates, b is the 
thickness of the piezoceramic plate, Z0 is the characteristic acoustic impedance, ρ is 
the piezoceramic material density, vD is the shear speed in the piezoceramic, Φ is the 
ideal transformer ratio, ω is the angular frequency, h15 is the shear piezoelectric 
pressure coefficient, X is the complex reactance, and the variables with the L and R 
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subscripts have the analogous meaning belonging to the left and right acoustical 
loads, respectively. The electrical components whose expressions are given by (1) 
and (2) will be used in the extended equivalent circuit from the following section. 
Because of their angular frequency dependency, an accurate circuit implementation 
for the frequency domain has to be done by using the Laplace type of controlled 
sources in SPICE analysis [4],[13]. 

ACCELEROMETER EQUIVALENT CIRCUIT APPROACH 

 

 
 

Figure 2 - Planar shear accelerometer (a) top view, and (b) symmetrical geometry structure 
(exaggerated scale) illustrating two piezoceramic plates sandwiched between the same center 

base and identical seismic masses 
 
The geometry of an accelerometer based on the thickness-mode shear-type operating 
principle is given in figure 2 [5],[7]. The seismic masses have a profile which fits 
inside of a preloading ring of radius R which confers mechanical rigidity to the 
system starting from its center-base. For the calculations presented in this work, the 
piezoceramic elements consist of PZ-23 [15], while the base is of stainless steel and 
the seismic masses are of titanium. The electrical connections are sketched in figure 
2b. The ratio between the thickness:width:length for the piezoceramic plates is taken 
1:4:10 in order to minimize the transverse vibrations influences [2],[10],[11],[12], and 
is kept constant during all calculations. Using the notations from figure 2a, the 
dimension Q is given by 
 

2MdbRQ −−=                                                   (3) 
 
where dM is the thickness of the center base. The seismic masses must be represented 
by a large enough succession of thin layers in order to approximate their real shape 
which has contact with the preloading ring. If n is the number of seismic mass layers 
at one side, the width of the ith layer is 
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When the acoustical loads are made by multiple layers, the KLM approach has 

to use the transfer-matrix formalism. The model does not have any restriction 
regarding the number of layers, their thicknesses or their mechanical properties. The 
number n has to be chosen as a compromise between computational time and desired 
accuracy, which will stop increasing significantly from a value of n that can be 
determined and kept constant for a given geometry. In figure 3 is illustrated how the 
succession of layers can be used to form the new acoustical load for a specific seismic 
mass profile. The new expressions for calculating the load impedances, using each 
layer’s characteristic acoustical impedance, are given by [1],[6] 

 

 
 

Figure 3 - Transfer matrix approach for the acoustic loads 
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whre H is the length of all layers and Q/n is their identical thickness. 

The SPICE subcircuit implementation for the acoustical loads is presented in 
figure 4. The source listing, where the Laplace type of controlled voltage source is 
used, is given by (8). 

 
 

Figure 4 - Subcircuit implementation for acoustical loads 
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IfUfZ )()( =  
.subckt KLM_LR 1 2 
v1 3 2 ac 1 
ez1 1 3 laplace {i(v1)}={Z_1()} 
.ends KLM_LR 

(8)

 
A similar transformation for the complex frequency domain is done also for the 

reactance X from figure 1a, whose expression is given in (1), yielding the new form 
 

( )D
X vbs

Zs
hsXjfXjIfU 2

0
2

2
15 sin1)()()( −

−
−

=⇒=             (9) 

After applying all necessary transformations for obtaining the equivalent 
electric model for the accelerometer from figure 2, the complete circuit was obtained 
as presented in figure 5. Its correspondent PSpice source listing is given in figure 6, 
the main file KLM_planar.cir using the library file KLM.lib. Such a code can be 
tested with the evaluation version of PSpice version 10.0 [14] or any other SPICE 
simulator which can interpret the Laplace type of controlled sources. 

The vibration induced by the base from figure 2b is represented by an 
independent voltage source vBase and a controlled voltage source eBase for the 
acoustical impedance. The two seismic masses which belong to the mechanical 
system are connected in the electrical circuit at the node 1, this being the point 
relative to which the transducer’s output impedance ZKLM is calculated. The 
reactances are implemented with two voltage sources, one independent for setting the 
current sense, and another one, dependent, for their complex value given by (9). The 
ideal transformers are represented by the dependent voltage sources eT and current 
sources gT.  

 
 
Figure 5 - Complete equivalent KLM circuit for the planar shear accelerometer 
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*KLM.LIB 
.param PI={4*atan(1)} 
.param alpha={1/3} 
*PZ-23 
.param h15=1.42e9 
.param vD=2307.5 
.param ro=7700 
.param eps11=1370 
.param b=1e-3 
.step param b 1e-3 5e-3 1e-3 
.param A={10*b*4*b} 
*Titanium - Seismic mass 
.param roLR=4450 
.param vLR=3120 
.param VolLR={20*PI*pwr(b,3)/pwr(alpha,2)} 
.param HLR={10*b} 
.param ALR={A/alpha} 
.param dLRguess={VolLR/ALR} 
*Stainless Steel - Middle 
.param roM=7890 
.param vM=3090 
.param AM={A/alpha} 
.param dM={roLR/roM * ALR/AM * dLRguess} 
.param R={2*b/alpha} 
.param Q={R-b-dM/2} 
.param n=10 
.func l_func(i) { 2*sqrt(R*R-pwr(b+dM/2+(i-1)* 
+Q/n,2))} 
.func Zc(i) { roLR*vLR*HLR*l_func(i) } 
.func Z_10() {sqrt(-1)*Zc(10)*tan(sqrt(-s*s)* 
+Q/n/vLR)} 
.func Z_9() {Zc(9)* 
+(Z_10()+sqrt(-1)*Zc(9)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(9)+sqrt(-1)*Z_10()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_8() {Zc(8)* 
+(Z_9()+sqrt(-1)*Zc(8)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(8)+sqrt(-1)*Z_9()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_7() {Zc(7)* 
+(Z_8()+sqrt(-1)*Zc(7)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(7)+sqrt(-1)*Z_8()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_6() {Zc(6)* 
+(Z_7()+sqrt(-1)*Zc(6)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(6)+sqrt(-1)*Z_7()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_5() {Zc(5)* 
+(Z_6()+sqrt(-1)*Zc(5)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(5)+sqrt(-1)*Z_6()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_4() {Zc(4)* 
+(Z_5()+sqrt(-1)*Zc(4)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(4)+sqrt(-1)*Z_5()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_3() {Zc(3)* 
+(Z_4()+sqrt(-1)*Zc(3)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(3)+sqrt(-1)*Z_4()*tan(sqrt(-s*s)*Q/n/vLR))} 
.func Z_2() {Zc(2)* 
+(Z_3()+sqrt(-1)*Zc(2)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(2)+sqrt(-1)*Z_3()*tan(sqrt(-s*s)*Q/n/vLR))} 

.func Z_1() {Zc(1)* 
+(Z_2()+sqrt(-1)*Zc(1)*tan(sqrt(-s*s)*Q/n/vLR))/ 
+(Zc(1)+sqrt(-1)*Z_2()*tan(sqrt(-s*s)*Q/n/vLR))} 
.subckt KLM_LR 1 2 
v1 3 2 ac 1 
ez1 1 3 laplace {i(v1)}={Z_1()} 
.ends KLM_LR 
 
*************************************** 
 
*KLM_planar.cir 
.include klm.lib 
.param eps0=8.8541e-12 
.param Z_0={ro*vD*A} 
.param cap={eps0*eps11*A/b} 
.param tau_delay={b/vD} 
RLgnd 11 0 1e12 
RLMgnd 13 0 1e12 
RMgnd 16 0 1e12 
RRMgnd 18 0 1e12 
RRgnd 20 0 1e12 
XL 11 10 KLM_LR 
TLL 10 11 12 13 Z0={Z_0} td={tau_delay} 
TLR 12 13 14 16 Z0={Z_0} td={tau_delay} 
vBase 15 14 ac 1 
eBase 16 15 laplace {i(vBase)}= 
+{sqrt(-1)*roM*vM*AM*tan(sqrt(-s*s)*dM/2/vM)} 
TRL 14 16 17 18 Z0={Z_0} td={tau_delay} 
TRR 17 18 19 20 Z0={Z_0} td={tau_delay} 
XR 20 19 KLM_LR 
vKLM 1 0 ac 0 
CL  1 2 {cap} 
RcapL 1 2 1e12 
vXL 3 2 ac 0 
eXL 4 3 laplace {i(vXL)}= 
+{sqrt(-1)*h15*h15/(-s*s*Z_0)*sin(b*sqrt(-s*s)/vD)} 
eTL 4 5 laplace {v(12)-v(13)}= 
+{sqrt(-s*s)*Z_0/2/h15/sin(sqrt(-s*s)*b/2/vD)} 
gTL 5 0 laplace {(v(12)-v(13))/Z_0}= 
+{-2*h15*sin(sqrt(-s*s)*b/2/vD)/sqrt(-s*s)/Z_0} 
CR  1 6 {cap} 
RcapR 1 6 1e12 
vXR 7 6 ac 0 
eXR 8 7 laplace {i(vXR)}= 
+{sqrt(-1)*h15*h15/(-s*s*Z_0)*sin(b*sqrt(-s*s)/vD)} 
eTR 8 9 laplace {v(17)-v(18)}= 
+{sqrt(-s*s)*Z_0/2/h15/sin(sqrt(-s*s)*b/2/vD)} 
gTR 9 0 laplace {(v(17)-v(18))/Z_0}= 
+{-2*h15*sin(sqrt(-s*s)*b/2/vD)/sqrt(-s*s)/Z_0} 
.ac lin 10001 1 299.9k  
.probe 
.end 
 
 

 
Figure 6 – PSpice listing for the complete equivalent circuit 

 
All geometrical parameters from figure 2 can be identified in the library file 

KLM.lib. The variable α denotes the ratio between the diameter of the preloading ring 
and width of the piezoceramic plate. In order to obtain a lower resonance frequency, 
its value has to be kept as small as possible. On the other hand, if α is too small, the 
mechanical stresses may cause physical damage near the edges of the thin plate. 
Finally, a compromise value of 0.33 was chosen for α. The nodes of the circuit 
presented in figure 5 are the same as the ones used in the listing from figure 6. For 
simplicity, it was considered that the area of the center base is the same as the area of 
the inner-most layer from the seismic mass approximation. For preventing too large 
simulation times, the number of layers was taken n = 10 at each side. The listing 
contains also seven resistors which have no AC functionality but avoiding floating 
nodes in the circuit. This is the reason why all of them have huge values, of 1 [TΩ].  
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NUMERICAL RESULTS 

A parametric plot was done for the thickness of the piezoceramic between 1 and 5 
[mm]. As long as all other geometries are expressed as a function of b, the following 
decaying rule for the resonant frequency was obtained.  
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For example, if the thickness b is 1 [mm] results a fres ≈ 146.5 [kHz]. This calculated 
value is higher than the mounted resonance frequency of a real accelerometer, 
because in that case the value is lowered by the case-seismic mass-center base pre-
loading force. The value is also much smaller when compared to the natural 
frequency of a 1 [mm] thick PZ-23 shear resonator, which is 946.1 [kHz] [15]. 
Depending on the accelerometer’s mechanical case and on the preloading methods, 
relatively small transducers can be designed to resonate at frequencies below 5…10 
[kHz] [5].  

A simulation concerning the KLM impedance of the accelerometer, for 
illustrating the resonant and anti-resonant frequencies, is presented in figure 7. It can 
be clearly drawn out that with the increasing of the piezoceramic thickness the first 
resonant frequency is decreasing [3].   

 

 
 

Figure 7 - Logarithmic plots for the KLM impedance as a function of the piezoceramic 
element width and frequency 
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SUMMARY 

The KLM approach was used for a relatively simple shear-type accelerometer, 
starting from the equivalent circuit of a single piezoceramic plate. The standard KLM 
model was extended in order to include the coupling effects between the center base 
and the plates, and to approximate as close as possible the real shape of the seismic 
masses. A special attention was given to implement accurately in the frequency 
domain the equivalent circuit. Finally, an impedance plot for the calculated spectra 
was presented for showing the resonant and anti-resonant frequencies. 
 The design principles here presented can be used for simulating in frequency 
domain other types of accelerometers, when the spectra are of interest during the 
design phase. 
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