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Abstract 
For build-up structure such as that of a ship, which should be  not only statically stable but 
also watertight, blocking mass other than elastic interlayer could be used to reduce 
transmission of structure-borne sound. In this paper, a simplified model of corner interface of 
two infinite plates rigidly jointed at arbitrary angles with blocking mass is taken for theoretical 
analysis by wave approach. Two local coordinate systems are introduced to deduce 
formulations of transmission and reflection coefficients as well as transmission loss. The 
effects of different parameters of blocking mass on transmission loss are investigated 
numerically. Five samples were tested in experiment. Discussions were carried out based on 
the comparison between prediction and experiment in terms of insertion loss of blocking mass. 
It is concluded that blocking mass acts like a “low-pass filter”, effective for vibration 
attenuation above certain frequency. The value of TL in “attenuation band” depends mainly on 
mass per unit length and band width of “attenuation band” on mass moment of inertia per unit 
length of blocking mass. 

1. INTRODUCTION 

This paper is concerned with vibration transmission in built-up structures such as those 
of ships. Owning to the complexity of build-up structures, statistical energy analysis 
(SEA) method [3] has been frequently used for vibration energy distribution 
calculation. However, SEA gives only statistical results of energy level of each 
component in the structure averaged in time, space and modes simultaneously, and is 
not suitable for analysis at low frequencies because of low modal density. At present, 
numerical methods such as FEM are more widely used in vibration analysis of built-up 
structures, but large number of elements increasing with frequency needed in 
calculation as well as linear assumption still cause much inconvenience at high 
frequencies[2]. So in a word, analytical analysis by wave approach supplemented with 
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experiments is still meaningful to reveal the mechanism of vibration energy 
transmission in build-up structures. 

R. M. Grice and R. J. Pinnington carried out an analysis of this kind for 
plate-stiffened beam [1]. Their research is focused mainly on the energy transmission 
in beams and that from beam to plate. However, energy transmission from plate to plate 
is more close to the case in ship structures. Furthermore, longitudinal waves are still of 
significance in the sense of their effects on boundary conditions and will cause 
secondary bending waves at the next joints, though they themselves do not induce 
much sound radiation.  

An earlier analysis on wave transmission in plates was seen in L. Cremer and M. 
Heckl’s book [4] where discussion is restricted to the case of right angle joint. The 
analysis in this paper is based on it and extended to the case of vibration transmission at 
the corner interface of two infinite plates rigidly joined at arbitrary angles. The effects 
of blocking mass attached to the joint for attenuation of vibration transmission are 
investigated.  

2. DESCRIPTION OF MODEL 

Consider a corner interface of two infinite thin plates, possibly of different material and 

different thickness, joined together at arbitrary angles θ  ( 0
2
πθ< ≤ ), as depicted in 

Fig. 1 where 1 1x oy  and 2 2x oy  are two coordinate systems and subscripts 1, 2 indicate 
plate 1 and plate 2 respectively. For structure-borne sound attenuation, a blocking mass, 
which is not shown in left plot of Fig. 1, is attached to the joint with the assumption that 
the geometric size of the blocking mass is small enough comparing with the 
wavelength of the longitudinal and bending waves propagating in the two plates. 

Plane bending wave propagating along plate 1 (primary plate) towards plate 2 
(secondary plate) through the joint as well as the longitudinal waves generated at the 
joint are considered. 

 
Fig.1  Corner interface joined at arbitrary angles 
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3. FORMULATION 

Wave expressions 

For a given frequency, this incident wave can be expressed in terms of transverse 
velocity as 

1 1
1

jk x j t
yv e e ω−
+% , 

where 1yv +%  is the amplitude of incident bending wave velocity,  bending wave 

number in plate 1 , 
1k

ω  the  radian frequency and 1j = − . For simplicity, the time 
dependence j te ω  has been omitted in the following expressions.  

Upon impinging on the joint, a part of incident wave is reflected and the other 
part transmitted into plate 2. The total transverse velocity in plate 1 is therefore written 
as  

( )1 1 1 1 1 1
1 1 1( ) jk x jk x k x

y y jv x v e re r e− + +
+= + +% ,    for 1 0x ≤                      (1) 

where  and r jr  are the reflection coefficient for reflected travelling wave and 
evanescent wave respectively. And the total transverse velocity in plate 2 is written as 

                            ( )2 2 2 2
2 2 1( ) jk x k x

y y jv x v te t e− −
+= +% ,    for                       (2) 2 0x ≥

where t  and jt  are the transmission coefficient for transmitted travelling wave and 
evanescent wave respectively. 

Apart from bending wave, the transverse force in cross section of plate 1 induces 
a longitudinal wave in plate 2 for 0θ > , and vice versa. 

Transmission coefficients 

The reflection and transmission coefficients in (1) and (2) are determined from 
boundary conditions at the joint which are expressed as follows:  
a) Continuity of rotational, transverse and longitudinal velocity at the joint gives 

1 2
1 20z zx

w w
0x= =

= ,                                                                  (3) 

                           
1 2 2

1 2 20 0 0
cos sinx x yx x x

v v vθ θ
= = =
= − ,                                 (4) 

                           
21 2

1 2 200 0
sin cosy x yxx x

v v vθ θ
== =

= + ,                                  (5) 

where 1xv  and 2xv  are the longitudinal velocities.  
b) Dynamic equilibrium of bending moment, axial and transverse force gives 
                                              

1 2
1 20 0z zx x 2zM M jω

= =
w′− = Θ ,                                          (6) 

                 
2 12

2 2 10 00
sin cosy x xx xx

F F F jθ θ ω
= == 1xM v′− − = ,                         (7) 

21 2
1 2 2 00 0

cos siny y x xx x
F F F j Mθ θ ω

== = 1yv′− − = ,                         (8) 
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where 1xF , 2xF  are the longitudinal forces, and 1yF , 2yF  the shear forces, M ′  is mass 
per unit length and  mass moment of inertia per unit length of the blocking mass. ′Θ

By substituting velocity expressions into boundary conditions as well as the 
differential relations between force, moment and velocity, the following formulation 
for , r jr ,  and t jt  is deduced as 
                                                                   Ax b= ,                                                       (9) 
where 
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 where mass per unit 

surface area m hρ′′ = , bending stiffness of the plate 21
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 where  and  are 

longitudinal wave speeds,  and  bending wave speeds for plates. 

1LIc 2LIc

1Bc 2Bc

It is worth to note that for the particular case of 
2
πθ = (i.e. corner interface at 

right angle) and (without blocking mass) equation (9) reduces exactly to 
the results given in Cremer and Heckl’s book [4]. 

0M ′ ′= Θ =

From (9) it is ready to have 
1x A b−= ,                                                      (10) 

hence , r jr ,  and t jt  are solved. 
It should be noted that the previously discussed components in Fig. 1 are 

restricted to thin plates so as to ensure pure bending wave assumption which 
requires 6B hλ > . This also sets an upper frequency limit  

max 2

1.8
20

LI L

B

c h cf
hλ

= < I .                                             (11) 

This limit does not add much inconvenience for the reason that thin plate assumption 
can be satisfied in most cases of engineering. For example, the common thickness of 
steel plate used in ship structure is about 20mm for which maxf  will be 13.5 kHz and 
that is high enough for general purpose of structure-borne sound investigation. 
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The assumptions of plane wave and infinite width make plates behave like 
beams. Thus formulation for r , jr , t  and jt  for beams is the same as that for plates, 
except B′ , I ′  and  for plate should be replaced by m′′ B , I  and m′  for beam. 

Transmission loss 

It is more meaningful to consider vibration transmission in terms of energy   other than 
velocity in engineering. Furthermore, bending wave transmission other than 
longitudinal one should be paid more attention to because it is just bending wave that 
causes secondary sound radiation at destination. So that (energy) transmission 
efficiency of bending-to-bending wave BBτ  is induced. Transmission loss of bending 
wave is then given by 

2
110 log 10 log
BB

TL
tτ χψ

⎛ ⎞⎛ ⎞
= ⋅ = ⋅ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠

1
⎟

, dB                              (12) 

4. NUMERICAL INVESTIGATION 

Shown in Fig. 2 are some of calculated results of TL for the joints with blocking mass 
of different parameters comparing with those without blocking mass. In calculation, 
the two components are both steel plates of 2mm thickness. Mass per unit length M ′  
and mass moment of inertia per unit length ′Θ  of the reference blocking mass are equal 
to those of a steel beam with cross section measured 20mm×20mm. 

 
Fig. 2  Variations  of TL  with different parameters of blocking mass 
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The following observations are drawn from Fig. 2: 
1) Each TL curve with blocking mass has a vale and afterwards increases rapidly to a 

highland. That is to say blocking mass acts like a kind of “low pass filter”, which 
divides the whole frequency domain into “transmission band” and “attenuation 
band” with a transition part in-between, for transmission of bending wave. 

2) In “transmission band” TL of joint with or without blocking mass makes almost no 
difference. That is to say that blocking mass has very little effects on attenuation of 
bending wave transmission at low frequencies. 

3) As M ′  is kept constant (see (1), (3)), TL curves for different ′Θ  are alike，and 
every single TL curve shifts leftwards, which broadens the bandwidth of 
“attenuation band”, with increasing ′Θ . 

4) As  is kept constant (see (2), (4)), the value of TL in “attenuation band” 
increases with 

′Θ
M ′  and TL curves at low frequencies have almost no difference 

from each other. 

5. EXPERIMENT 

There are 5 test samples used in the experiment. Parameters of the samples are listed in 
Table 1. Sketch and dimensions of test samples are shown in right plot of Fig. 1. 

In order to ensure plane wave produced in plate 1 by point excitation, a steel 
beam of cross section 20mm×20mm, perpendicular to the direction of wave 
propagation, is attached. The excitation point is allocated at the midpoint of the beam. 
Some parts of plate are coated by damping sheet to suppress the returning waves from 
plate edges. Furthermore, damping is arranged in such pattern as shown in Fig. 1 to 
prevent giving rise to a sharp transition of impedance from undamped area to damped 
area which is not good for reflection reduction. 

Table 1  Five test samples 
No. #1 #2 #3 #4 #5 

θ  
3
π  

3
π  

6
π  

3
π  

6
π  

section of 
blocking mass 

(mm×mm) 

 
40×40 

 
20×20 

 
20×20 

 
None 

 
None 

The samples are suspended by three elastic ropes to guarantee free boundary 
condition. The experiment site, measurement and analysis system are shown in Fig. 3. 
Samples are excited by B&K4810 shaker which is connected to B&K1407 sinusoidal 
signal generator and B&K2706 power amplifier. A B&K8200 force transducer is 
installed between the shaker and the beam to ensure equal magnitude of excitation 
force for each test. The measurement point is on the central line of the plate 2, 300mm 
away from the joint so as to get rid of the effect of evanescent waves generated at the 
joint. The signal picked-up by Kistler8791A250 accelerometer at plate 2 is conditioned 
by Kistler5134 coupler and processed by China-made DH5935N signal processor. 
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The insertion loss IL is calculated by 

20

2

20 log vIL
v

⎛ ⎞
= ⋅ ⎜

⎝ ⎠
⎟ , dB                                            (13) 

where  and  represent the velocity responses at the measurement point for test 
sample with and without blocking mass respectively. 

2v 20v

 
Fig. 3  Experiment site (left) / measurement and analysis system (right) 

 
Fig. 4  Comparison of prediction and experimental results 

for different blocking mass  size (BM: mm×mm) and θ 

Shown in Fig. 4 are comparisons of IL results of numerical prediction and 
experiment.  
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Discussions about Fig. 4 are as follows: 
1) Each IL curve of measurement has a vale with negative value and afterwards 

increases with frequency, similar to that of prediction. 
2) The discrepancy of experiment and prediction is small at low frequencies and 

increases with frequency. Because plane wave assumption is no longer valid by 
point excitation on the beam at frequencies upper than the first mode (or resonance) 
frequency of the beam. 

3) For the reason that returning waves can not be entirely absorbed to prevent the 
structure from resonance although damping sheet is attached, insertion loss at 
frequencies of resonance will be much lower than predicted such as the result at 
500Hz in case #1 and 1500Hz in case #3. 

4) Form the comparison of measurement curves in case #1 and case #2 for the same 
angle (lower-right plot), it can be seen that the value of IL with larger blocking 
mass is higher. Moreover the frequency corresponding to the vale decreases with 
mass moment of inertia, which is in accordance with theoretical analysis. 

6. CONCLUSION 

The results of numerical investigation and experiment show the similar trend of the 
effects of blocking mass on attenuation of vibration transmission. The following could 
be concluded: 
1) Blocking mass attached at corner interface of two steel plats acts as a kind of 

“low-pass filter”, effective for vibration attenuation above certain frequency. 
2) The value of TL in “attenuation band” is mainly depends on mass per unit length of 

the blocking mass, and the bandwidth of “attenuation band” depends on mass 
moment of inertia per unit length of the blocking mass. 

3) The simplified model combined with wave approach is useful to reveal the 
mechanism of vibration energy transmission in built-up structures although some 
discrepancy introduced by the complexity of practical wave fields. 

4) More refined model is needed for further research on the phenomenon of vibration 
transmission of built-up structures. 
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