
 

 
 

 

AN INNOVATIVE HYBRID CFD/BEM METHOD FOR 
THE PREDICTION OF BODY-TURBULENCE 

INTERACTION NOISE 

Christophe Schram and Michel Tournour 

LMS International, Interleuvenlaan 68, Researchpark Haasrode Z1, 3001 Leuven, Belgium 
christophe.schram@lms.be 

Abstract 
The increasing public awareness and concerns with respect to aerodynamically generated 
noise has led Computational Acoustics (CA) and Computational Fluid Dynamics (CFD) 
communities to develop the so-called hybrid approach, where the flow description obtained 
by CFD is used to synthesize equivalent aeroacoustic sources that are injected into a CA 
code. We propose an original implementation of the hybrid approach based on Curle’s 
analogy, which formally describes the mechanism of sound generated by body-turbulence 
interaction. The originality stands in the separate handling of the effects of the body as source 
and scattering entity by the flow and acoustic solvers. The acoustic propagation is carried out 
using an acoustic code based on the Boundary Element Method (BEM), in which scattering 
by arbitrary geometries can be computed, including impedance effects where needed. 
Preliminary results are presented, validating the numerical handling of the pressure 
fluctuations as equivalent dipoles, and showing that the acoustical scattering is effectively 
accounted for by source surfaces, which was not the case with the conventional approach. 

INTRODUCTION 

The problem of sound generation by turbulence interacting with solid surfaces was 
given its first formal treatment through Curle’s analogy [1]. This analogy considers 
the integral solution of Lighthill’s analogy [2], written in differential form 
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where ( ) ijijjiij cpvvT σδρρ +′−′+≡ 2
0  is Lighthill’s tensor,  is the fluid velocity, v

ijσ  is the viscous stress tensor, 0ρρρ −≡′  is the perturbation density chosen as 
acoustic variable, and . The indexed quantities , 0ppp −≡′ 0c 0ρ  and  are the 0p
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speed of sound, density and pressure in the quiescent and uniform medium taken as 
reference state in the propagation region. The density perturbation is caused by 
compressibility effects and non-isentropic effects. The pressure perturbation is related 
to momentum exchange, and also for isentropic flows to compressibility effects and 
density fluctuations through the definition of the speed of sound ( ) cstspc =′′≡ ρ2

0 . 
The integral solution of the differential equation ( 1 ) is classically obtained making 
use of a Green’s function ( yx ,, τt )G , solution of the same inhomogeneous wave 
equation as ( 1 ), but where the right-hand-side is replaced by a Dirac pulse emitted at 
the position y  and time τ : 
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where V  is the integration volume extending over the whole source region excluding 
the region occupied by the solid body, and V∂  is the boundary of this region,  
comprising the body surface. The first integral in ( 2 ) represents the noise produced 
by the double divergence of Lighghill’s tensor in the bulk of the fluid contained in V , 
and the second integral represents the acoustic scattering of this incident sound over 
the boundaries. After a number of simplifications, discussed below, one obtains: 
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where the first term is equivalent to an acoustical quadrupole, and the second term 
represents an acoustical dipole. Adopting a free field Green’s function, Curle showed 
in [1] that at low Mach numbers 0cUM =  and low Helmholtz numbers 

02 cDfHe π= – i.e. for a source acoustically compact, the ratio of the acoustic 
energies emitted by the quadrupolar and dipolar contributions scales as 2M . 
Neglecting the quadrupolar contribution is therefore justified at low-Mach numbers, 
which makes Curle’s analogy quite powerful in applications such as noise produced 
by side mirrors, antennas, landing gears or wind turbine blades exposed to 
atmospheric turbulence, at least up to the low frequencies associated to large-scale 
turbulent structures. The solution ( 3 ) can be implemented following a so-called 
hybrid approach: the flow field is resolved in a first stage, and the sound field is 
determined in a second step, using Lighthill’s tensor and the pressure fluctuations 
provided by the flow model in Eq. ( 3 ). This uncoupled way of processing of the 
flow data does naturally prescribe any acoustic feedback to the source flow region, 
where the density is usually assumed to be equal to the reference density 0ρ . 
Excluding situations where aero-acoustical resonance occurs, this approximation is 
usually quite reasonable at low Mach numbers. However, certain problems can arise 
that are related to the assumptions that were introduced to obtain Eq. ( 3 ). The first 
assumption, easily verified, considers the solid surface of the body to be steady, with 
a no-slip and no-penetration velocity boundary condition. The second hypothesis 
consists in neglecting the contribution of the viscous stresses to the net reaction force 
exerted by the body on the fluid. This hypothesis, discussed by Morfey [3], should be 
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relevant in industrial applications where high-Reynolds flow separation dominates the 
force spectrum at the wall. The third assumption, which is seldom recognised as such 
in the literature, consists in considering that the flow model, used to provide 
Lighthill’s equivalent source tensor, accounts for compressibility effects over the 
surface of the body located in the source region. This crucial assumption is involved 
in the derivation of Eq. ( 3 ), allowing to substitute the scattering integral in Eq. ( 2 ) 
by the dipole source integral [4]. The present paper addresses the pertinence of this 
assumption, and proposes an alternative implementation of Curle’s analogy when it 
proves irrelevant, such as when an incompressible flow model is used to describe a 
non-compact equivalent source. 

CURLE’S ANALOGY USING AN INCOMPRESSIBLE FLOW MODEL 

The issue shows up when the dimensions of the solid body in the source region 
become comparable to, or exceed the wavelength of the sound it produces. Two 
examples of such situation can be evoked. The first one concerns the high-frequency 
component of the broadband noise produced by a turbulent boundary layer 
developing over an airfoil and being convected past its trailing edge, known as 
trailing-edge noise [6]. The second example concerns the sound produced by 
turbulence developing in ducts. In both cases, the region where turbulence interacts 
with the solid body extends over several acoustical wavelengths, and the acoustical 
scattering must be accounted for in the flow model. However, at low Mach numbers, 
incompressible flow simulations are often used to describe the source region. The 
density perturbations are in that case not contained within Lighthill’s tensor, which is 
approximated by: T , where the pressure perturbation, 
when evaluated at the wall, is now exclusively associated to the incompressible 
conversion of wall-normal momentum into pressure across the boundary layer. The 
pressure perturbations in the surface integral of Eq. ( 3 ) are fairly uninfluenced by 
compressibility effects at low Mach numbers [5]. Indeed, for isentropic flows at low 
Mach numbers, the compressible, acoustic component of the pressure perturbation is 
quite small compared to the pressure perturbation resulting from the conversion of 
wall-normal momentum across the unsteady turbulent boundary layer. If the 
incompressible Lighthill tensor is used in Eq. ( 2 ), Eq. ( 3 ) becomes (neglecting the 
viscous stress contribution and with a no-slip boundary condition at the wall): 
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where the acoustic scattering is explicitly calculated over the surface of the body. One 
way to alleviate the difficulty of evaluating the scattering over the body surface 
consists in using a Green’s function that is tailored to the body such that its normal 
derivative vanishes over the surface. This approach has been adopted for airfoil self-
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noise prediction, by using either a half-plane Green’s function or semi-analytical 
methods such as Schwarzchild’s technique [6], or using approximated compact 
Green’s functions for low-Mach numbers [7]. In extended duct systems however, 
there exists only a very limited number of idealized cases where analytical Green’s 
functions can be obtained, and the scattering must be calculated numerically. The 
next section is devoted to the development of a specific implementation of Curle’s 
analogy to be used with incompressible flow data where the source and scattering 
effects of the body are decoupled, the latter being computed by the Boundary Element 
Method of the commercial software SYSNOISE Rev5.6. 

BOUNDARY ELEMENT FORMULATION OF CURLE’S ANALOGY 

Boundary Integral Equations are usually written considering the acoustical pressure 
perturbation as unknown, and with the wave equation written in the frequency 
domain. Equation ( 1 ) is then written as a Helmholtz equation: 

Laa qpkp ˆˆˆ 22 =+∇  ( 5 ) 

where , ti
aa ppc ωρ eˆ2

0 =′=′ 0ck ω=  and jiijL xxTq ∂∂∂−= ˆˆ 2  with T . The 
Helmholtz equation ( 5 ) is resolved using the free field Green’s function in frequency 
domain 
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Combining Eq. ( 5 ) with the Helmholtz equation for the Green’s function, we obtain: 
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where the volume V  has been subtracted from the volume V  (see Figure 1) because 
the acoustic field is to be evaluated over the surface of the body itself, and the 
singularity of the Green’s function kernel at 

ε

xy =  must be excluded to perform the 
integrations by parts that follow. The point xy =  being not contained in V , the 
second integral of ( 6 ) is identically zero. Integrating by parts the LHS of ( 6 ) yields: 
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The contribution of the last integral is evaluated for the limit of the exclusion 
volume (supposed spherical) dimension tending towards zero [8]: 
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where the factor C  is the normalized solid angle seen by the point  in its 
exclusion volume V , different from 1 when the point  lies on the surface of the 
acoustic mesh. 
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Figure 1: integration volume, excluding the Green kernel singularity at x . 

The surface normal points outwards from the integration volume 
(reversed in BEM convention: the dotted normal vector points outwards from the solid body). 

y=

Back-substituting ( 7 ) and ( 8 ) into Equation ( 6 ) gives:  
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Performing the same treatment for the remaining volume integral, we find: 
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where the sub-index  has been introduced to indicate quantities that derive from 
Lighthill’s tensor, provided by a suitable flow model. 

L

Introducing the decomposition haL ppp +≡ , where  is associated to an 
isentropic compression and  is the hydrodynamic component, Eq. ( 10 ) can be 
interpreted in two ways: 

ap

hp

1. The source description satisfies the isentropic, compressible flow equations. In 
that case, Equation ( 10 ) becomes: 
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which is analogous to the classical Curle analogy: the surfaces wetted by turbulence 
act as pure sources, acoustic scattering is not to be evaluated over these surfaces. A 
subtle difference is however that Eq. ( 11 ) provides directly the total (hydrodynamic 
and compressible) pressure field, as a result of placing the listener in the flow field. 
The usual acoustic pressure perturbation is obtained by placing the listener in the 
quiescent and uniform medium that is generally considered in the propagation region. 
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2. The source description is obtained by an incompressible flow model. The 
density fluctuations are not captured by the flow solution, and Eq. ( 10 ) becomes, 
assuming a steady surface where 0=∂∂ npa : 
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Remarkably, both formulations ( 11 ) and ( 12 ) appear as formally identical 
using the decomposition haL ppp += . The difference is that in Eq. ( 11 ), the total 
pressure  is given as input from the flow description, and resolved over the body 
surface; while in Eq. ( 12 ), the hydrodynamic component  is given and the 
acoustic component  is resolved. A Boundary Element discretisation of the 
boundary integrals is implemented for the resolution of the acoustic pressure. 

Lp
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The BEM approach consists in decomposing the continuous surface into small 
surface elements, where the continuous unknown field is approximated by a nodal 

expansion:  where  is the value taken by the pressure field at 

the node  of the element . In matrix form, this yields at the collocation node : 
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and q  is the incident field emitted by the volumetric source of Equation ( 12 ). k

PRELIMINARY RESULTS 

 
The first validation case concerns an external propagation problem, in which periodic 
forces applied to a sphere radiate in free field. In the present case, the frequency 
considered makes the sphere compact, such that the classical form of Curle’s analogy 
is implemented. The purpose is to validate quantitatively the amplitude of the sound 
field calculated from the BEM discretisation. Pressure fluctuations are spatially 
generated over the surface of the sphere with unit radius (2400 elements), following a 
cosine of the polar angle (see Figure 2). The sound pressure is obtained at a field 
point located on the z-axis, at a distance equal to 1000 sphere radii. The frequency is 
1 Hz, making the sphere effectively compact (1/340th of the wavelength). The 
differences of retarded time can therefore be neglected. The pressure is in far field 
( ) ( ) ikrrcFirp −= e4cos,, 0πθωωθ  where the net force N34π=F , placed at the 

centre of the sphere, is obtained by surface integration of the hydrodynamic pressure. 
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We obtain a theoretical acoustical pressure 
amplitude equal to 6.16×10-6 Pa at the field 
point. The calculation yields an acoustical 
pressure amplitude of 6.15×10-6 Pa. The 
same correct result was obtained using the 
‘incompressible dipole’ formulation ( 12 ). 

The second validation case concerns 
an internal acoustic propagation problem. 
Dipoles with unit amplitude have been 
applied over a frequency range from 10 to 
50 Hz with 0.1 Hz interval, over one face at 
the extremity of a 10 meters long duct, with 
a 1 m x 1 m square section.  The problem is 

Figure 2: sphere with cosine dipole 
distribution. 

first solved using the ‘compressible dipole’ formulation ( 11 ) (with no volumetric 
source term), therefore assuming that the pressure data accounts for compressibility 
effects, and in particular for the acoustic scattering. The ‘incompressible dipole’ 
formulation ( 12 ) has been applied in a second step. The pressure is evaluated in both 
cases at a field point located at 2 m from the duct end opposite to the dipole B.C. 
face, on the duct centreline. The first two acoustical resonances, correspond to 
longitudinal modes at frequencies of 17 Hz and 34 Hz, are seen in Figure 3 to be 
correctly captured using the ‘incompressible dipole’ formulation, while the 
‘compressible dipole’ formulation yields results with no apparent resonance. 

The difference is due to the fact that according to the classical Curle analogy, 
the scattering is simply not computed over the parts of the boundary mesh where 
dipoles are generated from the flow data, on the assumption that the dipoles account 
themselves for the scattering. At the opposite, the source and scattering effects are 
decoupled in the formulation ( 13 ), so that the flow description should not capture 
acoustical effects, which are handled by the BEM solver. The situation is more 
ambiguous in cases where low-order compressible CFD simulation is used to model 
the source, such methods being known to capture localized acoustic propagation, but 
dissipate this information within a certain fraction or couple of wavelengths away 
from the source. Ad-hoc coupling schemes must be devised to account for the variety 
of cases depending on the effective compressibility achieved by the flow model. This 
is the subject of future developments. 
 

CONCLUSIONS AND PERSPECTIVES 

Curle’s aeroacoustical analogy has proved its usefulness in applications where the 
acoustical scattering is accounted for by the flow model, or when scattering can be 
neglected owing to acoustical compactness. A straightforward application of the 
classical form of this analogy is however inadequate when the extend of the sound-
generating body extends over several acoustical wavelengths and when the flow data 
accounts imperfectly for acoustical effects over its surface, such as when 
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incompressible or low-order compressible CFD is used to model the flow in the 
source region. An alternative form of Curle’s analogy has been developed and 
implemented in a Boundary Element Method, which decouples the roles of the body 
surface as a source and scattering entity. The method has been validated 
quantitatively and qualitatively, in the case of a compact source in free field and for 
an internal propagation problem, using arbitrary pressure fluctuations to model the 
source. Further validations are planned, which include realistic configurations where 
the flow data is provided through incompressible and low-order compressible 
Computational Fluid Dynamics simulations. 
 

 
Figure 3: duct resonances obtained with the incompressible dipole formulation (red curve), 

and absent using the compressible dipole formulation (blue curve). 
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