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Abstract  
An analysis of the propagation of longitudinal waves in transversely isotropic cylindrical 
shells based on the three-dimensional theory of elasticity is outlined in this paper. The 
mathematical model developed for the scattering of acoustic waves from solid cylinders [F. 
Honarvar and A. N. Sinclair, J. Acoust. Soc. Am. 100(1), 57 (1996)] is extended to the case 
of cylindrical elastic shells. Stress-free boundary conditions are applied at the inner and outer 
cylindrical boundaries of the shell and the exact form of the frequency equation is derived in 
terms of the wave number, cylinder radii, and material elastic constants. Dispersion curves 
are plotted for a number of different transversely isotropic materials. A perturbation study on 
the effects of shell thickness and relative magnitude of elastic constants is conducted. The 
results indicate that the dispersion curves are relatively sensitivite to perturbations of the 
thickness and axial stiffness of the shell. 
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INTRUDUCTION 

Transversely isotropic cylindrical shells, such as pipes, have wide applications in 
industry. Transverse isotropy is usually desirable since it provides higher strength to 
stiffness ratio along the cylinder axis. The wave phenomena are more complicated in 
anisotropic materials compared to isotropic materials. This necessitates a more 
rigorous study of these phenomena when using ultrasonic nondestructive testing for 
inspection of anisotropic materials. 

Theoretical studies on wave propagation in anisotropic cylinders and shells 
have been pursued for many years. Mirskey [1] studied the propagation of free 
harmonic waves in transversely isotropic circular cylinders. Tsai et al. [2] and Tsai 
[3] investigated the cylindrically guided waves in transversely isotropic shafts and 
thick hollow cylinders and plotted the dispersion curves for a number of transversely 
isotropic rods and shells. Chan and Tsang [4] investigated the propagation of acoustic 
waves in a fluid-filled borehole surrounded by concentrically layered, transversely 
isotropic media. In all these studies the mathematical model is based on prediction of 
the form of displacement field and the final solution is somehow guessed. 

Honarvar and Sinclair [5] used a mathematical model in which the scalar 
potential representing the horizontally polarized shear wave can be decoupled from 
the compressional and vertically polarized shear waves. The solution was used for 
scattering of acoustic waves from transversely isotropic cylinders.  

Ahmad and Rahman [6] verified that transversely isotropic materials can show 
two different behaviors. They found that type I materials qualitatively behave similar 
to isotropic materials and have two critical angles whereas type II transversely 
isotropic materials possess an additional critical angle. They calculated the critical 
angles for several materials and determined the type of transverse isotropy. One of the 
authors [7], showed that the ratio 1133 / cc is very important in determining the type of 

transversely isotropic materials where in type I/type II, the stiffness along the axis is 
higher/lower than the other directions lying in the transverse plane.  

In this paper, propagation of longitudinal waves in transversely isotropic shells 
is studied. The mathematical model is based on the approach used by Honarvar and 
Sinclair [5] for modeling the scattered pressure field from a transversely isotropic 
cylinder. The shell is considered to have free boundary conditions. Using this model, 
the dispersion curves for two types of transversely isotropic materials are plotted. A 
perturbation study is also conducted on the elastic constants and thickness of the 
shells. 

THEORY  

A cylindrical coordinate system ),,( zr θ , is chosen with the z-direction coincident 
with the axis of the cylinder, see Fig. 1. Wave propagates through the shell of infinite 
length, outer radius a and inner radiusb . 

The wave equations are obtained by combining the constitutive equations and 
equations of motion for a transversely isotropic material. These equations are in terms 
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of components of the displacement vector, i.e. ru , θu  and zu . The displacement vector 

is written in terms of three scalar potential functions as follows [5]: 

 
Figure 1- The coordinate system used in the derivation of equations 

)ˆ()ˆ( zz ele ψχφ ×∇×∇+×∇+∇=u  (1) 

where zê is unit vector in the z-direction. The constant l  with the dimension of length 
is introduced for equidimensionality, and is set to be the inverse of the wavenumber 
in the z-direction, 1−= zkl . The potentialφ represents the P wave (compressional 
wave) and ψ  and χ , respectively, represent the SV wave (vertically polarized shear 
wave) and SH wave (horizontally polarized shear wave). By solving the resulting 
partial differential equations, the scalar potentials for an infinite cylindrical shell are 
found to be of the form: 
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where ck /ω= is the wave number, c is the phase velocity,ω is the circular frequency 
and nJ  and nY  are first and second type Bessel functions of order n , respectively. 

Moreover, 1s , 2s , 3s , 1q and 2q  are constants depending on the elastic constants of the 

material, frequency and phase velocity[5]. 
For axisymmetric problems, i.e. longitudinal waves travelling along the shell 

axis, the displacement field is independent of the θ-coordinate and of the 
form )u0,,(u

θr . This mode of wave propagation corresponds to n=0 in Eqs. (2) and 

results in 0χ = [9]. 
For an empty cylindrical shell in vacuum, the traction-free boundary conditions 

hold in both the inner and outer radii. Therefore,  
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By applying the boundary conditions, the system of linear algebraic equations will be 
as follows; 
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 (4) 
where elements ija  of the coefficient matrix are given in appendix A. In this case, the 

frequency equation is of the form, 
[ ] 0adet ij =  (5) 

This equation is also called the dispersion equation and shows the relationship 
between the frequencies and the phase velocities of various modes of longitudinal 
guided waves in a transversely isotropic cylindrical shell in terms of its elastic 
constants. Using this equation, the dispersion curves can be plotted for different 
modes. 

NUMERICAL RESULTS 

In order to illustrate the general behavior of the solution, numerical examples are 
considered in this section. Realizing the large number of parameters involved, no 
attempt is made to exhaustively evaluate the effect of varying each of them. Our 
purpose is merely to illustrate the kind of results to expect from some representative 
and physically realistic choices of values for these parameters. From these data some 
trends are noted and general conclusions are made about the relative importance of 
certain parameters.  

The wave numbers of the longitudinal guided modes propagating in free 
transversely isotropic cylindrical shells can be calculated at any frequency by 
numerically searching for the zeros of the frequency equation. We shall present the 
dispersion relation in terms of the frequency-dependent phase velocity. The 
dispersion curves can be plotted using the roots of Eq. 5. The phase velocity is 
normalized with respect to the bar velocity, bc where ρ/ab Ec = and 

)/(2 1211
2
1333 ccccEa +−= , aE  is the axial Young’s modulus. 

To study the effects of type of transversely isotropic material in a cylindrical 
shell, the dispersion curves are plotted for type I and type II shells with different 
elastic constants. The calculations are made for cobalt as a type I and cadmium as a 
type II transversely isotropic material with elastic properties given in [6].   
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Figure 2- Calculated dispersion curves for cobalt (type I) circular cylindrical shell with: 

0.60.7,0.8,0.9,b/a0.002,a ==  

 
Figure 3- Calculated dispersion curves for cadmium (type II) circular cylindrical shell with: 

0.60.7,0.8,0.9,b/a0.002,a ==  
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Figure 2, shows the calculated dispersion curves for different longitudinal 
modes of cobalt (Type I) shells having different thicknesses. As the normalized 
frequency tends to infinity, the phase velocity of the lowest mode approaches the 
velocity of Rayleigh wave. With increasing the thickness of the cylindrical shell, cut-
off frequencies are observed at higher frequencies, which indicate that the mode does 
not exist below that value.  

Figure 3, shows the calculated dispersion curves for different longitudinal 
modes of cadmium (Type II) circular cylindrical shells having different thicknesses. 
The dispersion curves for this material are different. Compared to Figure 2, 
differences can be observed especially at low frequencies and low phase velocities. It 
seems that in this region, there is severe dependence on the type of transversely 
isotropic material. The thinner the shell, the lower the number of modes propagating 
along it, and the larger the cut-off frequencies.  

 
Figure 4 - Calculated dispersion curves for an aluminum ( 0.02a =  and 7.0/ =ab ) circular 
cylindrical shell in two cases of axial stiffness perturbations: white square ( ): isotropic 

aluminum and filled square ( ): a) 30% increase in  c33, b) 30%  decrease in c33: 

Aluminum is considered as isotropic material with Lame constants 
corresponding to a transversely isotropic material having the same elastic properties 
as aluminium [7]. Since 33c  is a crucial parameter in determining whether a 

transversely isotropic material is of type I or II, this elastic constant of the aluminum 
shell ( 0.02a = , 7.0/ =ab ), is perturbed  by %30± . 

The resulting dispersion curves are plotted in Figures 4(a) and (b). Comparing 
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Figs. 2 and 3 with  Figs. 4(a) and 4(b), we observe that increasing/decreasing stiffness 
of aluminum along the z  axis has resulted in dispersion curves similar to those of a 
type I/ II material. The dispersion curves for cobalt/cadmium as type I/type II 
transversely isotropic material is very similar to the dispersion curves for aluminum 
with 30% increase/decrease in 33c . 

 
Figure 5 - Calculated dispersion curves for Aluminum (Isotropic material and 0.02a =  

7.0/ =ab ) circular cylindrical shell with white square ( ):  transversely isotropic 
modeling, filled square ( ): isotropic modeling 

The dispersion curves of Fig. 5 can be used to verify the validity of the 
mathematical model used in this paper. Curves shown by white squares ( ) are 
obtained by the transversely isotropic modeling while curves shown by filled square 
( ) are obtained by the Helmholtz decomposition technique commonly used in the 
case of isotropic materials. As shown, there is good agreement between these two 
models except at lower frequencies where the model for transversely isotropic 
materials predicts the velocity of Rayleigh wave while the Helmholtz decomposition 
in high frequencies predict the velocity of Rayleigh wave. 

CONCLUSIONS 

In this paper, the propagation of longitudinal waves in circular cylindrical shells is 
studied. The normal mode expansion is used for longitudinal waves propagating 
along free transversely isotropic circular cylindrical shells. The displacement vector is 
written in terms of three scalar potential functions representing the compressional, 
vertically polarized and horizontally polarized shear waves. The formulation 
accommodates two types of transversely isotropic materials. Results indicate that 
resonances are sensitive to the type of transversely isotropic material and thickness of 
the shell.  

This method can also be used for other modes of wave propagation in 
transversely isotropic cylindrical shells. For instance if 0n ≠ , flexural vibration 
modes of the shell are obtained and if potential functions (Eqs. 2-4) are changed and 
appropriately selected, this method can be used for studying the propagation of 
torsional waves. This method of solution can be extended for solving the problem of 
multilayered solid cylinders and shells.  
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APPENDIX A 

Elements of the matrices given in Eq. 4:  
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