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Abstract 
In this paper, a mathematical model for the scattering of a plane acoustic wave incident at an 
arbitrary angle on an encased isotropic clad rod is developed. The model is based on the 
normal-mode expansion method. The isotropic solid matrix around the cylinder precludes the 
appearance of the leaky Rayleigh modes that dominate the spectrum of an immersed cylinder. 
Instead, interfacial modes contributing to the scattered spectrum are observed. These modes 
could be instrumental in the development of ultrasonic nondestructive evaluation techniques 
for assessment of the matrix-fiber bonds in fiber reinforced composite materials. The 
presence of a solid matrix that supports shearing action leads to scattered compression and 
shear waves with polarization components in both the axial direction and θ−r  plane. The 
model has been verified on various simpler cases, such as embedded solid cylinder and 
immersed clad rods. Work in underway to establish the conformity of the results with 
experimental data. 

INTRODUCTION 

The problem of scattering of obliquely incident waves from cylindrical objects is 
becoming more important due to increasing needs for ultrasonic nondestructive 
evaluation (NDE) of composites. In particular, the problem of acoustic wave 
scattering from multi-layered cylindrical components has been considered by a few 
researchers. Some studied wave scattering from multi-layered cylindrical shells, 
while others investigated multi-layered rods.  
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Elastic wave scattering from a cylindrical inclusion in a solid has been well 
documented in the literature [1-5]. Addison and Sinclair developed an analytical 
model for computing the diffraction spectrum and phase diagram of a plane 
compression wave incident on a long fiber embedded in a solid elastic matrix [5]. A 
comprehensive list of early publications can be found in Ref [5]. Huang et al. studied 
the scattering of waves from multilayered fibers and the effect of fiber-matrix 
interphasial properties [6-8]. Almost all previous studies address normal incidence of 
an elastic wave on a solid cylinder. White obtained general solutions for oblique 
elastic wave scattering from a cylinder but did not report numerical results [1]. 
White’s solution was also summarized in some detail by Pao and Mao [3]. 
Experimental results on the scattering of elastic waves obliquely incident on a 
cylinder encased in a solid matrix with application to nondestructive evaluation of 
composites have been reported by Johnston et al. [9]. In 1996 Huang et al. extended 
their earlier theoretical work on the scattering of normally incident elastic waves from 
a multilayered cylinder to oblique scattering using a transfer matrix approach [10].  
Honarvar and Sinclair used a normal-mode expansion based on decomposition of 
displacement field to calculate the scattered pressure field of an immersed 
transversely isotropic cylinder [11]. They also formulated the problem of scattering of 
an obliquely incident plane acoustic wave from an infinite solid elastic clad rod in 
1997 [12]. In 2000 Fan used the formalism of Ref. [11] for modeling the scattering of 
waves from a transversely isotropic cylinder encased in an isotropic matrix [13]. 
In this paper, a mathematical model for the scattering of a plane acoustic wave 
incident at an arbitrary angle on an encased clad rod is developed.  

FORMULATION OF THE PROBLEM 

Consider a plane wave traveling through an infinite, isotropic medium, incident at an 
angleα  on a long, encased isotropic clad rod of radius ar = , see Fig. 1. A cylindrical 
coordinate system ),,( zr θ  is chosen with the z  direction coincident with the axis of 
the cylinder. 
The displacement field ),,,( tzru θr  in the matrix can be expressed in terms of three 
scalar potentials ψφ, and χ  [11], 
 

),ˆ()ˆ( zz eaeu ψχφ ×∇×∇+×∇+∇=
r                                                                        (1) 
  
In the matrix material, each of the three wave potentials can have two components: an 
“incident” and a “scattered” wave component.  
For the case where the incident wave is compressional with circular frequencyω , the 
associated normalized potential function in the matrix has the general form [6], 
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where αcos22 KK =⊥ , αsin22 KK z = , and 2K is the compressional wave number in 
the matrix material.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The symbol nε is the Neumann factor ),( 0201 >=== nforandnfor nn εε . The 

nJ  terms are Bessel functions of the first kind. For the a shear wave polarized in the 
θ−r  plane, the associated normalized potential is,  
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where αcos22 kk =⊥ , αsin22 kk z = , 2k is the shear wave number in the matrix. Last, 
for the case of an incident shear wave polarized in the zr −  plane, the associated 
potential function is [14],  
 

.])[exp()cos()()(
0

22,3 ∑
∞

=
⊥ −=

n
zn

n
nincident tzkinrkJi ωθεψ  (4) 

Now consider the component of the displacement field ur  in the matrix material 
originating from waves scattered by the cylinder, and the associated potential 
functions [5],  
 

∑
∞

=
⊥ −=

0
22,3 ]),[exp()cos()()(

n
znn

n
nscattered tzinrKHPi ωκθεφ  (5) 

∑
∞

=
⊥ −=

0
22,3 ]),[exp()cos()()(

n
znn

n
nscattered tzinrkHRi ωκθεψ  (6) 

Fig. 1. Geometry of a plane wave obliquely incident on an encased clad rod. 
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where nH  represents the Hankel function of the first kind and nP , nR  and nS  are 
unknown coefficients to be determined. The z2κ  can be either equal to zK 2  or zk2  
depending on the nature of the incident wave. The total displacement in material 3 
can now be obtained by summing the incident and scattered components,  
 

scatteredincident uuu ,2,22 += , (8) 
 
and making the appropriate substitutions from Eqs. (1) – (7). 
 

Isotropic Clad Rod 

If the isotropic core and cladding media are designated by subscript 2,1=i , 
respectively, then using Helmholtz displacement potential functions, iφ (scalar) and 

iψ  (vector), the Navier’s equation for each medium can be written as  
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where iλ  and iµ  are the Lame constants and iρ  are the material densities. By 
expanding Eq. (9), four partial differential equations in terms of potential functions 
are obtained for each medium. In order to satisfy these partial differential equations, 
the potential functions should be of the following forms [12],  
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2Lc and 
2Tc are the compression and shear wave velocities in the cladding material, 

respectively.  nnnnnn NMLKFE ,,,,,  are unknown coefficients. 
 

Boundary Conditions 

There are twelve boundary conditions at the core-cladding and matrix-cladding 
interfaces. The boundary conditions (continuity of stresses and displacement) at the 
matrix-cladding interface, ,ar = are:  

32 ][][ θθ σσ rr = ; 32 ][][ rrrr σσ = ; 32 ][][ rzrz σσ =  (12) 

32 ][][ rr uu = ;   32 ][][ θθ uu = ;  32 ][][ zz uu =  
  
At the core-cladding interface, br = , the corresponding boundary conditions are:  
 

21 ][][ θθ σσ rr = ; 21 ][][ rrrr σσ = ; 21 ][][ rzrz σσ =  (13) 

21 ][][ rr uu = ;  21 ][][ θθ uu = ; 21 ][][ zz uu =  
where expressions for the stress at any point can be derived from the determined 
displacement field. Inserting the potential functions from Eqs. (7) and (11) in Eqs. 
(13) and (14), results in the following system of twelve linear algebraic equations, 
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][ nD  is a 1212×  matrix with components designated as ija . Eq. (15) can be solved 
for unknown coefficients at any given value of normalized frequency ka .  
 
For the case of incident compression waves, the resulting normalized far-field 
amplitude spectrum, which is called the form function, is obtained from the following 
equation [13],  
 

nn
n
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and for incident shear waves (of either zr −  or θ−r  polarization) by  
  
 nsn

n
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The parameter nQ  which is equal to one of the coefficients nP , nR  or nS depends on 
the type of the scattered wave, as defined in Eqs. (5), (6) and (7). 
 
 

NUMERICAL RESULTS 

To verify the mathematical model, form functions of an immersed copper clad- 
aluminum rod and a steel fiber encased in epoxy matrix are each calculated for some 
incident angles. Verification of the model is done by considering an isotropic cylinder 
covered by isotropic cladding. The form function is evaluated for a copper clad-
aluminum rod immersed in water for two incident angles. The corresponding form 
functions shown in Fig. 2 are identical to those of Fig. 2, Ref. [13].  
Verification of the model is also done by considering an isotropic cylinder encased in 
an isotropic matrix. The form function is evaluated for a steel fiber encased in epoxy 
matrix. The corresponding form functions shown in Fig. 3 are fully identical to those 
of Fig. 2, Ref. [13]. Using this model, form functions of an alumina (Al2O3) fiber- 
zirconia (ZrO2) cladding encased in aluminum (AA520) matrix for two incident 
angles of o3 and o5 are presented in Fig. 4. Elastic properties for aluminum, copper, 
steel, epoxy, alumina (Al2O3), aluminum (AA520), zirconia (ZrO2) and water were 
taken from Ref.’s [12], [13] and [15]. 
 
 

CONCLUSIONS  
In this paper, a mathematical model for scattering of an obliquely incident plane 
acoustic wave from an isotropic clad rod encased in an isotropic matrix was 
developed. The isotropic matrix was modeled by decomposition of the displacement 
field into three potential functions. The displacement filed inside the isotropic clad-
rod was formulated using Helmholtz decomposition technique. The boundary 
conditions were applied to determine the unknown scattering coefficients. Using this 
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model, two special acoustic wave scattering problems were studied: a) an immersed 
isotropic cylinder covered by isotropic cladding and b) an encased isotropic cylinder 
and encased isotropic clad-rod. The form functions are identical to those reported in 
other references. The form function of an isotropic alumina (Al2O3) fiber covered by 
zirconia (ZrO2) and encased in aluminum (AA520) matrix was calculated.  
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Fig. 2- Copper clad-aluminum rod form functions at incident angles .5,0 oo=α   
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Fig. 4- Form functions for alumina fiber-zirconia cladding encased in aluminum matrix at 
incident angles oo 5,3=α .

Fig. 3- Form functions of steel fiber encased in epoxy at incident angles oo .10,3=α .


