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Abstract 
The talk addresses theoretical and experimental analysis of the energy transmission in 
a straight elastic tube bearing three eccentrically attached identical masses in 
relatively low frequency range, where a classical beam theory is applicable.   

The theoretical model is formulated as a system of boundary equations, which 
describe propagation of flexural, axial and torsion waves within each segment of a 
tube between inclusions, and continuity conditions at the points, where masses are 
attached. The presence of masses couples propagation of waves of all these types. An 
exact solution of this system is obtained and it is found that appropriate location of 
three identical equally spaced masses can dramatically decrease the power input into 
the system in some frequency stop bands regardless the excitation conditions. This 
effect, well known for an infinite chain of periodic attachments, is demonstrated here 
for only three periodicity cells . Theoretical analysis is expanded to parametric 
studies of location of stop bands in a given frequency range and to sensitivity 
analysis of wave attenuation inside the stop bands to possible imperfections of 
mounting and spacing of attachments.  

INTRODUCTION 

Control of vibroacoustic energy transmission in pipelines is an important and 
challenging problem in various industrial and civil applications. The ability to carry 
out low noise design of, for example, heating system in houses as well as the noise 
and vibration control of oil- and gas-transporting industrial pipelines is necessary to 
meet modern regulations. The transmission of vibro-acoustic energy may be 
suppressed by various tools of anechoic termination (see, for example, [2]) and it is 
not the goal of this paper to survey these. Rather, the attention here is focused on one 



Ole Holst-Jensen, Sergey Sorokin 

particular tool - utilising the phenomenon of frequency band gaps in periodic 
structures. Although the existence of this phenomenon is predicted by Floquet theory 
in unbounded periodic structures [1], recent publications [3-4] have shown that the 
presence of a small number of inclusions is capable to produce a substantial 
attenuation of the transmitted waves. In these references, the methodology of 
boundary integral equations has been applied in the framework of a general theory of 
thin shells to analyse wave propagation in compound shell with continuous 
inclusions. In this paper, the same problem is considered in the framework of a beam 
theory and the results of experimental investigation are compared with theoretical 
predictions. 

THE THEORETICAL MODEL  

The energy transmission in straight elastic beams bearing concentrated masses can 
conveniently be described within the framework of boundary integral equations 
method. In the general case of spatial vibrations, these equations should be 
formulated for the longitudinal waves, for torsion waves and for flexural waves. 
These waves propagate independently upon each other in a homogeneous beam, but 
they interact in a compound beam of spatial configuration or in a beam bearing 
inclusions.  
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Here ,xU , ,x , ,xV  and ,xW are Green s functions, which describe the 
shape of forced vibrations of an infinitely long beam excited at a given frequency by 
a unit concentrated axial force, torque or transverse force, respectively. These 
equations are written for each segment of compound structure at the edges, 0 
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and l , 0 . They should be solved with continuity conditions at the 
interfaces between segments of a beam and appropriate boundary conditions.   

The layout of a structure, which is analysed theoretically and experimentally, is 
presented in Figure 1 

     

Figure 1. Analysed structure: Aluminum beam with three 
masses located periodically and excentric to the neutral axis. Measures in mm.  

It may be modelled either as a semi-infinite (if waves reflected from the right edge of 
the structure are neglected) or as a structure of finite length (if appropriate impedance 
conditions are formulated at the point mmx 1000

 

is introduced). In both cases, this 
structure consists of four segments. Displacement vector, rotation vector, force 
resultant and moment resultant at each edge are introduced for each segment of a 
compound structure. 
         The total power flow contains four components, 
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As discussed in the introduction, the presence of equally spaced inertial 
inclusions (the attachments shown in Figure 1) generates the band gap effect in an 
infinite structure bearing an infinitely large number of these inclusions (a periodic 
structure) for all power flow components. The practical issue explored in this paper is 
an assessment of a possibility to reduce the energy transmission by means of three 
inertial inclusions. 
For the first test specimen is chosen a flat aluminium beam with a thickness of 3 mm, 
a width of 30 mm. The length is seen in Figure 1: 1000 mm. The reason for this type 
of beam is in the experimental setup to reduce the flexural waves to one (vertical) 
plane, thereby simplifying the experimental verification. The beam is terminated in a 
sandwich damped structure. 
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RESULTS OF COMPUTATIONS 

Calculations are done for the model specified in the previous section of the paper. As 
discussed, it is sufficient to consider only flexural motion in a vertical plane. As a 
validity check, eigenfrequencies of a freely suspended beam composed of four 
segments in the absence of attached masses were calculated by use of the 
methodology of boundary equations. The obtained results were identical to those 
given by an elementary formula for eigenfrequencies of a uniform free-free beam. 
See Table 1.  

Table 1. Eigenfrequencies (in Hz) of a beam with and without three attachments. 
Bold: experimentally obtained values with no inclusions. 
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The power flow is calculated for the beam with three inertial elements. Two 
boundary conditions are used at the right edge of the beam:  

 

perfect impedance matching thin line in Figure 3 

 

Impedance coefficient Z = 0.1, dotted line in Figure 3 
As is clearly seen, the frequency band gap effect is generated at around 

190f Hz and it is extended up to approximately 700 Hz, where the second pass 
band is located.  

As is seen, the energy transmission is suppressed starting from the same 
frequency independent of the impedance condition. The magnitude of impedance 
coefficient Z very weakly influences the magnitude of the lower boundary of the 
frequency band gap. However, it totally determines the energy input into the 
structure.   
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Figure 3. The scaled power flow in a beam with three inclusions versus 
excitation frequency  

EXPERIMENTAL RESULTS  

The experimental results are obtained by excitation of the beam shown, in Figure 1, 
with a white noise force generated by a shaker. The response is measured in the 
position shown as accelerometer.  
The Modal Assurance Criteria comparison to the theoretically calculated 
eigenfrequencies in table 1 and the measured is acceptable, see Figure 4. 
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Figure 4.  Modal Assurance Criteria, comparing eigenfrequencies, no 
inclusions 

The transfer accelerance (m/s2)/N measured as the transfer between the force and the 
vertical accelation is show in figure 5 for the beam without inclusions and with three 
inclusions with a mass of 675 g. 
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Figure 5. Vertical acceleration/Force. Red: no inclusions, blue: 3 inclusions  

Four frequency regions are noted for the difference between the beam without 
inclusions and with three inclusions: 

 

Onset of band gap: 270 Hz - is higher than predicted 190 Hz 

 

Band gap between 270 and 660 Hz reductions of 10 to 20 dB are seen 

 

660  700 Hz a region with little or no difference  
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Band gap above 700 Hz as predicted 

It is noted that a band gap is observed in the frequency region 270  660 Hz, 
corresponding to the prediction. The next band gap predicted as starting at 700 Hz is 
observed. The experimental setup is being refined to attempt explaining the difference 
in band gap onset frequency. 

CONCLUSIONS 

The results reported in this paper suggest that the frequency band gap effect may be 
achieved by use of small number of inertial elements within practically meaningful 
frequency range. The location of this band gap is not strongly influenced by the 
impedance conditions at the point, where a compound beam is connected to the outer 
part of oscillatory system. A fair comparison between the theory and experiment is 
observed. Further investigations using different dimensions of pipe and inclusions are 
planned. 
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