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Abstract
The coupling of boundary elements and a raytracing procedure using the method of funda-
mental solutions is presented here. As results the Boundary Element analysis gives the nodal
values of the primary variable (e.g. sound pressure) and of the secondary variable (e.g. sound
flux) on the boundary and on demand - using a postprocessing step - the sound pressure or
sound flux in the domain. A raytracing procedure to be coupled on the Boundary Element
Method expects intensities of sound sources as loading input data. The required transforma-
tion can be done by the Singular Indirect Boundary Element Method [8]. It couples both
numerical procedures in an intermediate step between the Boundary Element Method and the
raytracing algorithm. This method works well but suffers from the disadvantage needing a
defined interface. Here, an alternative way to couple boundary elements and a raytracing pro-
cedure is presented. The method of fundamental solutions is used to find intensities of point
sources which produce the previously determined sound pressure. The method of fundamental
solutions is a meshfree method so it does neither demand the discretization of the domain nor
of the boundary. A defined interface is not needed. The presented hybrid numerical method is
applied on outdoor sound propagation problems.

INTRODUCTION

The Method of Fundamental Solutions (MFS) has so far been applied to various acoustic
problems. A review of the developments and application of the MFS for scattering and radi-
ation problems is given by Fairweather et al [5]. The performance of the MFS for acoustic
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wave scattering is analysed by Alves et al [1]. In the literature, many different names have
been used for this method, as e.g. multipole radiator synthesis or equivalent source method.

The advantages of the MFS are basically its properties as a meshless method: It does
not require the discretization of the model and no integration has to be performed. Optionally,
an optimization algorithm can be used to optimize the position of the sources in order to mini-
mize the residual at the prescribed boundary points, see Fairweather et al [4] and Cisilino et al
[3]. The Method of Fundamental Solutions can either be applied for fixed source positions or
with an optimization algorithm to find the source positions for which the residual is minimal.
The second approach is usually referred in the literature as the MFS with moving sources.

The methods of computational acoustics can basically be divided into two groups, the
wave-based methods and methods of geometrical acoustics. The first type consider the char-
acteristic of sound propagation as traveling waves, and so include all wave phenomena like
diffraction and interference. They are based on any kind of wave equation, which can be
the scalar wave equation in the time domain or the Helmholtz equation in the frequency do-
main. These methods are usually implemented using the Finite Element Method (FEM) or the
Boundary Element Method (BEM). Whereas in the geometrical acoustics approach the wave
character is neglected and sound propagation is considered as propagation of sound particles.
The travel path of a sound particle is called sound ray. Most of these methods require point
sources as input data.

For an application with a noise barrier or a noise protection dam around the source
and receivers at the far-field, the BEM is used for the near field around the source, where
the geometry might be complex and where diffraction and multiple reflection occur. For the
far-field over large propagation range, a ray method is applied which includes the effect of
refraction in the atmosphere due to a vertical profile of sound speed. This sound speed profile
can either result from a temperature profile or - using the effective sound speed approach -
also from a wind speed profile. Thus, to make use of both kind of methods in one problem
calculation, it is necessary to transform the sound field values (e.g. pressure) as output from
the wave-based method into equivalent point sources as input for the ray method. This will be
done by using the MFS in the following.

NUMERICAL PROCEDURE

Boundary Element Method

The boundary element method (BEM) is an effective numerical method for acoustic problems
especially for exterior unbounded domains. It reduces the discretisation effort by one dimen-
sion compared to domain discretisation methods. Furthermore, the important SOMMERFELD

radiation condition is implicitely fulfilled. This condition ensures that there are no reflections
from infinity into the domain. The acoustic BEM in the frequency domain gives an approxi-
mate solution of the Helmholtz equation.

∆p + k2p = 0 (1)
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which corresponds to the scalar wave equation with a time-harmonic approach. p denotes the
complex pressure and k = ω/c is the wave number. The differential equation (1) implies
all wave phenomena such as diffraction and interference. Weighting the Helmholtz equation
with a fundamental solution and applying Green’s theorem twice yields the boundary integral
equation [2]

1

2
p(~ξ) +

∫
Γ

∂p∗

∂~n
(~x, ~ξ)p(~x)dΓx =

∫
Γ

p∗(~x, ~ξ)
∂p

∂~n
(~x)dΓx, (2)

with the 3D fundamental solution p∗(~x, ~ξ) = eik|~x−~ξ|

4π|~x−~ξ|
.

Discretisation of the boundary leads to a linear system of equations to be solved:

G
∂p

∂n
− Hp = 0 (3)

The application of the boundary element method is limited by the high demand of computation
time, when larger systems of equations are to be solved, and by the restriction to homogeneous
material in the domain. The second is due to the fact that a fundamental solution has to be
known for the problem, which is normally just the case for homogeneous domains. However,
there are possibilities to include certain inhomogeneities such as an exponential sound speed
profile over a flat infinite ground: The so-called Conformal Mapping [9], [6] transforms the
domain to a special coordinate system so that the problem is referred back to the homogeneous
case.

Ray model

The main difference of a ray model compared to wave-based methods is that it describes sound
propagation as a transportation of particles rather than as a travelling wave. The wave front is
substituted by discrete particles. The propagation path of each particle is called a sound ray.
These sound rays are traced until they reach the receiver.

Here, the semi-analytical ray model of SALOMONS [11] is implemented and coupled
with the boundary element method. It is particularly suitable for this purpose because it com-
putes the sound field in the frequency domain and so it matches well to the described BEM
model with its time-harmonic approach. The ray model considers a monopole point source
and a receiver point over a homogeneous ground of finite impedance. The model represents
3D-propagation with an axisymmetry with respect to the vertical axis through the source. The
domain of interest is the vertical plane through the source and receiver point. It takes into ac-
count a downward refracting atmosphere which corresponds to an increasing effective sound
speed profile with height. The profile can either have a linear or a logarithmic shape. As the
ray theory neglects the wave character of sound propagation, the model doesn’t include wave
phenomena like diffraction at edges.

The algorithm of the model basically works as most other ray tracing models in two
steps: In the first step, all sound rays are determined which connect the receiver with the
source depending on the source and receiver height, the horizontal distance, and the layered
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atmosphere. In the second step, the contributions of all m sound rays are added up to get
the pressure at the receiver, i.e.,p =

∑
m Amexp(iφm), where φm = ωtm is the phase and

Am is the complex amplitude of ray m. For the special case of homogeneous media one can
substitute ωt = kr, and inserting φm = kr leads to an expression similar to the fundamental
solution of BEM. It can be shown that this ray method provides the analytical solution for a
non-refracting medium over an infinite flat ground.

The MFS for Acoustic Problems

i = 1

i = 2

i = 3

i = M − 1

i = M
j = 1

j = 2

j = 3

j = N − 1

j = N

ΩMFS

ΓMFS

Figure 1: General sketch for the interior MFS problem.

Acoustic problems in the frequency domain are governed by the Helmholtz equation 1.
In the following, 2D-problems are considered. A 2D fundamental solution for eq (1) is known
to be

G(xi, ξj) = −
i

4
H

(1)
0 (kr), (4)

which describes the pressure at xi caused by a unit source at ξj . H
(1)
0 is the Hankel function

of zero order and first kind. Here, i denotes the imaginary unit (not to mix with the index i

for the field points!), k is the wave number and r is the distance from the source point Sj at
position ξj to the field point Ri at position xi. If a half-space over rigid ground is considered,
the fundamental solution changes into

G(xi, ξj) = −
i

4
H

(1)
0 (kr) −

i

4
H

(1)
0 (kr′), (5)

where r′ is the distance of the mirror source S ′
j to the field point Ri. The idea behind the MFS

is to place a number of sources around the domain of interest ΩMFS, with their positions
and intensities set in order to fulfil the given boundary conditions along the boundary ΓMFS
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of the domain ΩMFS (see Fig. 1). Each source j at position ξj outside the domain ΩMFS
contributes a pressure field which is described by the fundamental solution G(xi, ξj). The
approximate solution is yield by collocation on a number of points xi on the boundary ΓMFS.
For a given boundary point xi the pressure value p(xi) is given by the linear superposition of
all contributions j = 1, 2, . . . , N , weighted by the intensity coefficients aj for each source:

N∑
j=1

G(xi, ξj) · aj = p(xi), xi ∈ Ω, ξi ∈ Ω̄. (6)

This equation is used as boundary conditions by inserting the known boundary values p̄i at
boundary points i on the right hand side. Doing this for all M boundary points results in a
system of linear equations

A · x = b, (7)

where the matrix entries Aij consist of the fundamental solutions G(xi, ξj) at point i due to a
source with unit intensity at point j, so

Aij = G(xi, ξj), (8)

the solution vector x contains the unknown source intensity coefficients aj , and vector b

contains the known boundary values.
The number of sources N does not have to be equal to the number of prescribed bound-

ary points M , but can also be smaller. In this case a non-square matrix arises from the equa-
tions shown above. This system of equations represents a linear least-squares problem which
can be solved using a Single Value Decomposition (SVD) algorithm. For further information
about SVD and its numerical implementation see e.g. Press et al [10].

COUPLING

Here, the MFS with fixed source positions is applied to the described coupling problem. In
addition, an optimization algorithm is implemented to find optimal positions of sources [7].

Primary source Internal points
i = 1 . . . M

Receiver

x

(a) Configuration for BEM.

Fig. 2(a) shows the configuration for the BEM calculation, with the primary source and
obstacles in the nearfield. This nearfield is approximated in the MFS by a number of equivalent
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Equivalent sources
j = 1 . . . N

Boundary points
i = 1 . . . M ReceiverΩMFS

xS

xΓ

(b) Configuration for MFS.

Figure 2: Sketch of the configurations for the considered coupling problem with fixed source
positions.

(or secondary) sources (•), see Fig. 2(b). The denotation in this figure is chosen according to
Fig. 1. For the MFS the pressure at the boundary points (◦) has to fulfil the pressure values
yielded by the BEM calculation. The vertical line of boundary points can be considered as the
left border of the MFS domain where the ray tracing calculation will be used. The x-position
of these vertical lines is xS for the sources and xΓ for the boundary points, respectively.

APPLICATION

The described numerical procedure is applied a noise protection dam with a point source on
its left hand side (figure 3).

Figure 3: Noise protection dam

Fig. 4(a) shows the condition number of the Matrix A the number of sources for three
different source positions. The number of boundary points is fixed at M = 600, and they are
placed in a vertical line at xΓ = 10.5 m and height up to 60 m. Obtained results show that
the positions of the sources xS have a strong influence on the matrix condition. If the sources
are too far away from the boundary points compared to the distance between two sources or
two boundary points - which is the case for xS = 5.0 m -, the system will be ill-conditioned
(i.e. high condition numbers). On the other hand, if the sources are too close to the boundary,
the matrix entries will become infinite as the fundamental solution G in eq. (8) is singular for
r → 0. In brief, the condition number of matrix A depends on the number of sources and their
relative positions with respect to the boundary points. Fig. 4(b) shows the relative error as a
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(a) Condition number of the system matrix (b) Relative error at internal points

Figure 4: Condition number and relative error at internal point for three different source posi-
tions xS = 5.0 m, 10.0 m and 10.4 m; xΓ = 10.5 m.

function of the receiver distance for the case of an homogeneous domain. The relative error
was computed by comparing the pressure results obtained using the two-step methodology
(BEM-ray method) to the exact solution given by a BEM calculation. The number of boundary
points and the source positions are the same as in Fig. 4(a) in order to evaluate the effect of the
matrix condition number on the actual quality of the result. The number of source points was
chosen to N = 200. It can be seen that the error curves associated to source positions close
to the boundary (i.e. xS = 10.0 m and xS = 10.4 m) show a nice behaviour. On the other
hand, the error for the source position xS = 5.0 m diverges and delivers unusable results. This
is a consequence of the very high condition number of about 1016 (see Fig. 4(a)). Results in
Fig. 4(b) also show that the error is always zero at xΓ = 10.5 m, since the boundary conditions
in the MFS were imposed in this position. Just beyond this position the error increases because
the approximated pressure field is not smooth in the near-field. At some distance from the
source, the pressure field smoothes for xS = 10.0 m and xS = 10.4 m and the proposed
procedure approaches the exact solution very good. The error is almost constant over the
whole range and even up to 10 km (not shown in Fig. 4(b)) the relative error is lower than two
percent.

SUMMARY

It is shown in this paper that the MFS can be successfully applied to couple a wave-based
method and a ray methods for solving outdoor sound propagation. The pressure distribution,
which is a result from a wave-based method, e.g. the BEM, can be well-approached by a
number of equivalent point sources, which are required as input data for most ray methods.
The results of error analyses encourage to use MFS for this coupling purposes. The presented
method is an alternative way to couple BEM and a ray model. Compared to coupling via the
Singular Indirect Boundary Element Method [8] it is more flexible. No defined interface is
needed an the number of boundary points and of equivalent sources may differ.



S. Langer, S. Hampel

REFERENCES

References

[1] C. J. S. Alves, S. S. Valtchev, ”Numerical comparison of two meshfree methods for
acoustic wave scattering”,Engineering Analysis with Boundary Elements, 29, 371-382
(2005)

[2] H. Antes: Anwendungen der Methode der Randelemente in der Elastodynamik und der
Fluidmechanik, Math. Methoden in der Technik 9, Teubner Stuttgart, 1988

[3] A. P. Cisilino and B. Sensale,”Optimal placement of the Source Points for Singular Prob-
lems in the Method of Fundamental Solutions”, Advances in Boundary Element Tech-
niques II,Hoggar Press (2001)

[4] G. Fairweather and A. Karageorghis,”The method of fundamental solutions for elliptic
boundary value problems”,Advances in Computational Mechanics, 9, 69-95 (1998)

[5] G. Fairweather, A. Karageorghis, P. A. Martin, ”The method of fundamental solutions
for scattering and radiation problems”,Engineering Analysis with Boundary Elements,
27, 759-769 (2003)

[6] S. Hampel, S. Langer and H. Antes: Representing outdoor sound propagation effects
with a BEM model, Proceedings of CFA/DAGA ’04, 2004

[7] S. Hampel, A. P. Cisilino, S. Langer, ”Application of Fundamental Solution as a Cou-
pling Procedure to solve Outdoor Sound Propagation”, BETEQ 2006, accepted, (2006)

[8] S. Langer, S. Hampel, ”Coupling Boundary Elements to a Raytracing Procedure us-
ing the Singular Indirect Method”,Proceedings in applied mathematics and mechanics
(PAMM), 5(1) (2005)

[9] K. M. Li and Q. Wang: A BEM approach to assess the acoustic performance of noise
barriers in a refracting atmosphere, Journal of Sound and Vibration 211(4), p.663-681,
1998

[10] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, ”Numerical Recipes in
Fortran”, Cambridge University Press, (1992)

[11] E. M. Salomons: Computational atmospheric acoustics, Kluwer Academic Publishers,
2001


