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Abstract 
The dynamic behaviour of a chain of cantilever beams, coupled by two rows of linear 
springs in a cyclic configuration is investigated. This simulates turbo-machinery 
blades which are too long and have to be laced by two rows of stiffeners. A 
theoretical approach based on Green’s functions is used to obtain the exact solutions 
of the differential equations of motion, which leads to the determination of the natural 
frequencies and mode shapes of the beams. The displacements of the constraint points 
in free vibration are calculated and used as a measure of mode localization. The finite 
element method (FEM, ABAQUS program) is also applied to the system, and the 
results are in excellent agreement with the theoretical. Using 12 beams and 24 springs 
of known mistuned properties, it is observed that for the doubly coupled cantilever 
beams, the first pass-band mode shapes (mode 1 up to mode 12) are weakly localized, 
but for the second and higher pass-bands, there is very strong localization. This is a 
new finding which should be of interest to turbo-machinery designers.  

INTRODUCTION 

Periodic structures, which are made of repeating sub-structures, ideally identical in 
every respect(along one or more directions), are a common occurrence in engineering 
design. Typical examples of periodic structures are aircraft fuselages, atomic structure 
in all matter, truss beams, ship hulls, railway lines (rail road tracks), antenna dishes, 
and bladed-disk assemblies such as the rotor of a turbine. For mathematical analysis, 
the assumption of identical properties of the sub-structures in design leads to exact 
solutions. But, due to manufacturing tolerances, assembly errors, minute differences 
in material properties and operational wear, the minute variations from sub-structure 
to sub-structure leads to a totally different dynamic behaviour of the complete 
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structure. In this case the structure will be known as a nearly periodic (mistuned or 
disordered) structure instead of a periodic (tuned or ordered) structure. The focus here 
is on bladed-disk assemblies arranged cyclically as in turbo-machinery blades. The 
blades, in practice, may be laced by one or two rows of stiffeners depending on 
length. The coupling effect of such stiffeners may result in mode localization where 
input energy is confined to a small section of the blade assembly leading to possible 
failure. The literature on this subject is extensive, starting with Anderson [1] who first 
linked minute dissimilarities in atomic structure to mode localization. Anderson’s 
findings were first applied to engineering structures by Hodges [2], who showed that 
the presence of disorder in a nearly periodic structure may invalidate the results of the 
tuned analysis. Mohamad [3] introduced an exact method based on Green's function 
to obtain the solution for the dynamic response of beams with general mass and 
spring attachments, and Mohamad and Al-jawi [4, 5, 6] applied this method to tuned 
and mistuned linear and cyclic systems. They calculated the natural frequencies for 
mistuned structures numerically by using both the theoretical method based on 
Green's function and the finite element approach (ABAQUS. Pierre and Dowell [7] 
investigated the underlying physical mechanisms of mode localization by 
perturbation methods for simple structures such as a chain of coupled oscillators. The 
free localized response of nearly periodic structure with cyclic symmetry was 
examined by Pierre, Tang and Dowell [8]. In the cited material, single rows of 
couplers were considered. For the subject of this paper, a double row of coupler linear 
springs is in effect. Double rows of stiffeners are encountered where the blade lengths 
are large. It is found that mode localization may or may not occur depending on 
frequency. 
 

SYSTEM MATHEMATICAL MODEL 
 

Figure 1a shows the schematic of a turbo-machinery bladed system with two rows of 
stiffeners. The system consists of N beams and two sets of springs (series k and q). 
An arbitrary beam was selected as beam number 1 and all elements numbered in the 
counter-clockwise direction. Figure 1b shows the blade in 3D. The differential 
equation of motion of beams 1, n and N can easily be written down, and after 
suppressing the harmonic dependence on time, the resulting mode-shape equations 
satisfy 
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                   (a) System configuration                                     (b) Blade view in 3D 
 

Figure 1-Blade system model 
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In the above equations, G is the green’s function after Mohamad [5], z is a 
frequency parameter and Y the mode shape functions evaluated at a general point x, a 
or b.  EI represents flexural stiffness.  To proceed to find the natural frequencies, 
equations (1), (2) and (3) are evaluated at x = a and at x = b for all the beams. The 
resulting equations are cast in matrix form as: 
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where P, R, S and Q are N x N tri-cyclic sub-matrices while Ya and Yb are N x 1 
matrices of the modal displacements of points a and b. Natural frequencies are 
obtained by setting the determinant of the coefficient matrix of equation (4) equal to 
zero, that is, 
 

0RSPQ I =− − 0SRQP I =− −
    , or alternatively,                               (5) 

 
Upon evaluation of the frequencies from equation (5), the constraint point 

displacements ( )aYn  and  are found, for each frequency, from equation (4) 
with  set to unity. The natural frequencies obtained, corresponding to the 
system data in Tables 1 and 2 are shown in Table 3.  

( )bYn
( )aY1

 
 
 Table 1. Beam Geometrical Properties (mm)                        Table 2. Spring Stiffnesses (N/m) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Beam  Length Width Thickness

1 400.667 39.847 5.212 

2 400.733 39.858 5.205 

3 401.300 39.890 5.170 

4 400.967 39.897 5.189 

5 401.167 39.861 5.177 

6 401.137 39.740 5.199 

7 401.300 39.867 5.161 

8 400.467 39.741 5.160 

9 400.767 39.927 5.182 

10 401.010 39.936 5.175 

11 401.120 39.819 5.198 

12 401.400 39.893 5.180 

Spring Spring k,  Spring q, 

1 71.932 62.230 

2 72.618 61.250 

3 72.618 60.662 

4 72.618 61.642 

5 73.010 62.524 

6 71.932 61.936 

7 72.618 62.524 

8 73.402 58.506 

9 72.814 60.074 

10 70.756 59.584 

11 70.560 60.466 

12 72.716 60.760 
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 Table 3. The first twenty four natural frequencies for the cyclic chain of twelve beams, Hz. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mode THEORETICAL FEM Mode THEORETICAL FEM 

1 26.84721 27.01277 13 167.58079 170.02782 

2 26.90683 27.07084 14 167.87300 170.32403 

3 26.92373 27.08862 15 168.11316 170.56627 

4 27.01258 27.16985 16 168.21116 170.66574 

5 27.03253 27.18849 17 168.24681 170.70136 

6 27.15648 27.30238 18 168.27672 170.73474 

7 27.23338 27.38390 19 168.71293 171.17628 

8 27.33169 27.46887 20 168.77157 171.23398 

9 27.33445 27.47348 21 168.93402 171.39589 

10 27.42579 27.55633 22 168.95322 171.41288 

11 27.43886 27.56782 23 169.48649 171.95730 

12 27.55152 27.68335 24 169.77341 172.24725 

 
In Table 3, the Finite Element Method (FEM) results were obtained using 

ABAQUS, and the Young’s Modulus for steel and density were assumed to be 208 
GPa and 7800 kg/m3. In addition, the spring attachment points were a /L= 0.500 and 
b/L = 0.875. The constraint point displacement vectors 
 

[ T
1232 )a(Y......)a(Y)a(Y1 ]                                                     (6) 

 
and 
 

 [ ]                                                 (7) T
12321 )b(Y......)b(Y)b(Y)b(Y

 
corresponding to each frequency are plotted in Figure 2. The finite element method is 
also used to plot the mode shapes as shown in the Figure. 
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Figure 2-Mode shapes. (a) Theoretical,  (b) FEM 
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CONCLUSIONS 

For the system configuration used in this study, it is possible to qualitatively discuss 
energy localization by examination of Figure 2a (constraint point displacements) and 
Figure 2b (full mode shapes from the finite element method). For modes 1, 2 and 3 
which belong to the first group of 12 modes in the first pass-band, it is observed that 
localization is practically non-existent. Both the theoretical and finite models depict 
an extended modal behaviour where all the beams are in motion. At all twelve modes 
in this pass-band, there is no localization. In the second group (modes 13-24), a very 
strong localization phenomenon is observed. Reference to the Figures shows that in 
mode 13 for example, strong localization occurs at beam 7 for both theoretical and 
finite element models. Similarly, for modes 14 and 15, strong localization is found at 
beams 3 and 12 respectively. Strong localization also occurs at the third group 
frequencies (modes 25-36, not shown).  
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